复现NC图表:别具一格小提琴图的绘制

很久没有复现作图了,今天我们复现一篇NC文章中的一个小图,是一个小提琴图。小提琴图之前我们做过很多了,这个小提琴图却是有一点别具一格,主要在于显示中位数与sd的形式上。
原文链接:
https://www.nature.com/articles/s41467-022-32283-3/figures/2要复现的图(左)与我们复现的结果(右)如下:

image.png

本文所用到的数据和注释代码已上传群文件!!!更多精彩内容请至我的公众号---KS科研分享与服务
接下来正式作图,前期比较中规中矩,修改颜色,stat_summary函数设置不同展示形式的小提琴图!


setwd("D:/KS项目/公众号文章/复现NC小提琴图")
A <- read.csv("C30.csv", header = T)
library(ggplot2)
colorder = c('#1A9E76','#D95F02')
ggplot(A,aes(x=cluster,y=value,fill=cluster))+
  geom_violin(width =0.8,color='black',size=1)+
  theme_classic() + 
  theme(text = element_text(size=10, colour = "black")) + 
  theme(plot.title = element_text(hjust = 0.5, size = 15),
        axis.text.x = element_text(colour = "black", size = 12),
        axis.text.y = element_text(colour = "black", size = 10),
        axis.title.y = element_text(color = 'black', size = 12),
        axis.line = element_line(size = 1))+ 
  labs(title = "", y = "Inferred abundance (C30)", x=" ") + 
  theme(legend.position="none") +  
  stat_summary(fun.data = "mean_sdl",  fun.args = list(mult = 1), 
               geom = "pointrange", color = "black", size=1)+
  scale_fill_manual(values = colorder)
image.png

做到这里,并不是我们这篇推文的目的,我们推文每一篇力求涉及一个小知识点,大家多个帖子看的多了,互通有无,互相总结,大多数内容使用起来也就得心应手了!可以看到,x轴标签和原文图不一样。这也正是我们要学习的:修改x轴标签和上标的问题。


ggplot(A,aes(x=cluster,y=value,fill=cluster))+
  geom_violin(width =0.8,color='black',size=1)+
  theme_classic() + 
  theme(text = element_text(size=10, colour = "black")) + 
  theme(plot.title = element_text(hjust = 0.5, size = 15),
        axis.text.x = element_text(colour = "black", size = 12),
        axis.text.y = element_text(colour = "black", size = 10),
        axis.title.y = element_text(color = 'black', size = 12),
        axis.line = element_line(size = 1))+ 
  labs(title = "", y = "Inferred abundance (C30)", x=" ") + 
  theme(legend.position="none") + 
  stat_summary(fun.data = "mean_sdl",fun.args = list(mult = 1), 
               geom = "pointrange", color = "black", size=1)+
  scale_fill_manual(values = colorder)+
  scale_x_discrete(labels=c(expression(TLS^"low"),
                            bquote(TLS^"high")))
image.png

image.png

这样就完美复现了,至于统计分析和添加显著性,这里就不说了,之前大量推文涉及这个问题,可自行学习!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容