算法复杂度O(1),O(N),O(N^2)

算法复杂度

上图对应的是算法复杂度的图片,X轴对应的是n(问题规模),Y轴对应的是执行的运行时间.

O(1)

O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变.哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话),冲突的话比较麻烦,指向的value会做二次hash到另外一块存储区域.
例子
从上面的图片我们可以看到O(1)的复杂度是恒定的,一点波澜都没有,什么是O(1)呢,就比如你是一个酒店的管理员,你负责管理酒店的钥匙,你很聪明,你把酒店的100把钥匙放在了100个格子里面存着,并且把格子从1~100进行了编号,有一天有客人来了,酒店老板说,给我拿10号房间的钥匙给我,你迅速从10号格子里面拿出钥匙给老板,速度非常快,这时候你就是一个电脑了,老板跟你说拿几号房房间的钥匙,你只需要看一眼就能知道钥匙在哪里。
代码对应

void main(void)
{
    int i = 0;
    i = 1;
    i = 3;
}

上面的i=1,i=3都是O(1)的复杂度.

O(n)

时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。
比如常见的遍历算法。
要找到一个数组里面最大的一个数,你要把n个变量都扫描一遍,操作次数为n,那么算法复杂度是O(n).
例子
突然,有一天,你的老板给你说,你用100个箱子存100把钥匙,太浪费空间了,你能补能把钥匙上编号一下,然后把钥匙要用绳子穿起来,这样我们可以把这个放箱子的地方再装修一个房间出来。你想了一下,是啊,现在房价这么贵,这样能多赚点钱。所以你就不能通过上面的方法来找到钥匙了,老板跟你说,给我拿45号房间的钥匙出来,你就需要从100个钥匙里面挨个找45个房间的钥匙。
O(n)是随着样本数增加复杂度按指数增加的,如果你的酒店老板把酒店的房间增加到一万个,然后有一天,老外不小心把穿钥匙的绳子弄断了,我了个叉叉叉,这时候老板说,老王快把98号房间的钥匙给我,老王惨爆了~~~我们假设如果老王的老板酒店有两万个房间呢?
对应代码

for(int i = 1; i<=100: i++)
{
    if(i == 45) 
         printf("Find it\n");
}

O(n^2)

时间复杂度O(n2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n2)的算法,对n个数排序,需要扫描n×n次

双层循环

用冒泡排序排一个数组,对于n个变量的数组,需要交换变量位置n2次,那么算法复杂度就是O2.
例子
随着经济发展越来越好,你的老板把酒店扩大了,有100层每一层有100个房间,当然,你还是你,你把每一层的钥匙穿在一起,然后一共就有100个用绳子穿起来的钥匙串。然后老板叫你找钥匙的时候,你先要找到楼层的编号,再对应找到房间的编号,所以大概对应的是这样的代码。
对应代码

int main ()
{
    int key;
    int array[100][100];
    
    for(int i=1;i<100;i++)
        for(int j=1;j<100;j++)
            array[i][j] = i*100 +j;
    scanf("%d",&key);
    for(int i=1;i<100;i++)
        for(int j=1;j<100;j++)
            if(array[i][j] == key)
                printf("FIND KEY\n");
    return 0;
}

这个可以看是O(N2) +O(N2) = O(2*N2) 把常数去掉变成O(N2)

O(logn)(底数一般是2)

再比如O(log n),当数据增大n倍时,耗时增大log n倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(log n)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
例子
这个就像是有一百把钥匙,你突然觉得,我从头找是不是太慢了,我从中间找,比如我要找到23号的房间钥匙,我从中间切开,找到50编号的位置,然后23在150里面,我再把从中间切开变成25,然后23在125之间,我再切开变成12.5,然后23在12.5~25之间,依次找下去,直到找到钥匙。这种查找钥匙的方法的复杂度就是O(log^n)
对应代码

/**
 *  折半查找函数
 *
 *  @param arr   数组
 *  @param len   数组长度
 *  @param value 查找元素
 *
 *  @return 返回查找元素的位置
 */
int searchItem(int arr[],int len, int value){
    int low = 0,high = len-1,mid;
    while (low <= high) {
        mid = (low + high)/2;
        if (value > arr[mid]) {
            low = mid+1;
        }else if (value < arr[mid]){
            high = mid - 1;
        }else{
            return mid;
        }
    }
    return -1;
}
 
int main(int argc, const char * argv[]) {
    //数组必须是有序数组
   int a[10] = {1,2,31,45,52,62,73,86,90,100};
    //查找86元素
    int l = searchItem(a,10,86);
    printf("loc = %d\n",l);
    return 0;
}

O(n log n)

O(n log n)同理,就是n乘以log n,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(n log n)的时间复杂度。

参考:https://zhuanlan.zhihu.com/p/52402826
参考:https://blog.csdn.net/lkp1603645756/article/details/85013126

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容