[复现NC]R语言一键画表达量箱线图并添加显著性|转载

可视化结果:

图片.png

数据输入

画图数据需要两个文件,一个是表达量数据,列为样本,行为基因。另外一个是注释信息,是关于样本分组的。

表达数据:


图片.png

样本信息:


图片.png

代码

library(RColorBrewer)
library(ggpubr)
library(ggplot2)
library(cowplot)


setwd("D:/生物信息学")
Exp <- read.csv("Exp.csv",header=T,row.names=1)#读入源文件
gene <- c("CD28","CD3D","CD8A","LCK",
          "GATA3","EOMES","IL23A","CXCL8",
          "IL1R2","IL1R1","MMP8","MMP9")#这里我们只选择这几个基因做数据
gene <- as.vector(gene)
Exp <- log2(Exp+1) #因为是FPKM数据,标准化一下
Exp_plot <- Exp[,gene]#提取需要作图得基因表达信息

info <- read.csv("info.csv",header=T)
Exp_plot<- Exp_plot[info$Sample,]
Exp_plot$sam=info$Type
Exp_plot$sam <- factor(Exp_plot$sam,levels=c("Asymptomatic","Mild","Severe","Critical"))

col <-c("#5CB85C","#337AB7","#F0AD4E","#D9534F")

plist2<-list()
for (i in 1:length(gene)){
  bar_tmp<-Exp_plot[,c(gene[i],"sam")]
  colnames(bar_tmp)<-c("Expression","sam")
  my_comparisons1 <- list(c("Asymptomatic", "Mild")) 
  my_comparisons2 <- list(c("Asymptomatic", "Severe"))
  my_comparisons3 <- list(c("Asymptomatic", "Critical"))
  my_comparisons4 <- list(c("Mild", "Severe"))
  my_comparisons5 <- list(c("Mild", "Critical"))
  my_comparisons6 <- list(c("Severe", "Critical"))
  pb1<-ggboxplot(bar_tmp,
                 x="sam",
                 y="Expression",
                 color="sam",
                 fill=NULL,
                 add = "jitter",
                 bxp.errorbar.width = 0.6,
                 width = 0.4,
                 size=0.01,
                 font.label = list(size=30), 
                 palette = col)+theme(panel.background =element_blank())
  pb1<-pb1+theme(axis.line=element_line(colour="black"))+theme(axis.title.x = element_blank())
  pb1<-pb1+theme(axis.title.y = element_blank())+theme(axis.text.x = element_text(size = 15,angle = 45,vjust = 1,hjust = 1))
  pb1<-pb1+theme(axis.text.y = element_text(size = 15))+ggtitle(gene[i])+theme(plot.title = element_text(hjust = 0.5,size=15,face="bold"))
  pb1<-pb1+theme(legend.position = "NA")#
  pb1<-pb1+stat_compare_means(method="t.test",hide.ns = F,
                              comparisons =c(my_comparisons1,my_comparisons2,my_comparisons3,my_comparisons4,my_comparisons5,my_comparisons6),
                              label="p.signif")
  plist2[[i]]<-pb1 
}

plot_grid(plist2[[1]],plist2[[2]],plist2[[3]],
                plist2[[4]],plist2[[5]],plist2[[6]],
                plist2[[7]],plist2[[8]],plist2[[9]],
                plist2[[10]],plist2[[11]],plist2[[12]],ncol=4)#ncol=4表示图片排为几列

图片.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容