[Machine Learning From Scratch]-unsupervised_learning-partitioning_around_medoids

  
from __future__ import print_function, division
import numpy as np
from mlfromscratch.utils import normalize, euclidean_distance, Plot
from mlfromscratch.unsupervised_learning import PCA


class PAM():
    """A simple clustering method that forms k clusters by first assigning
    samples to the closest medoids, and then swapping medoids with non-medoid
    samples if the total distance (cost) between the cluster members and their medoid
    is smaller than prevoisly.
    Parameters:
    -----------
    k: int
        The number of clusters the algorithm will form.
    """
    def __init__(self, k=2):
        self.k = k

    def _init_random_medoids(self, X):
        """ Initialize the medoids as random samples """
        n_samples, n_features = np.shape(X)
        medoids = np.zeros((self.k, n_features))
        for i in range(self.k):
            medoid = X[np.random.choice(range(n_samples))]
            medoids[i] = medoid
        return medoids

    def _closest_medoid(self, sample, medoids):
        """ Return the index of the closest medoid to the sample """
        closest_i = None
        closest_distance = float("inf")
        for i, medoid in enumerate(medoids):
            distance = euclidean_distance(sample, medoid)
            if distance < closest_distance:
                closest_i = i
                closest_distance = distance
        return closest_i

    def _create_clusters(self, X, medoids):
        """ Assign the samples to the closest medoids to create clusters """
        clusters = [[] for _ in range(self.k)]
        for sample_i, sample in enumerate(X):
            medoid_i = self._closest_medoid(sample, medoids)
            clusters[medoid_i].append(sample_i)
        return clusters

    def _calculate_cost(self, X, clusters, medoids):
        """ Calculate the cost (total distance between samples and their medoids) """
        cost = 0
        # For each cluster
        for i, cluster in enumerate(clusters):
            medoid = medoids[i]
            for sample_i in cluster:
                # Add distance between sample and medoid as cost
                cost += euclidean_distance(X[sample_i], medoid)
        return cost

    def _get_non_medoids(self, X, medoids):
        """ Returns a list of all samples that are not currently medoids """
        non_medoids = []
        for sample in X:
            if not sample in medoids:
                non_medoids.append(sample)
        return non_medoids

    def _get_cluster_labels(self, clusters, X):
        """ Classify samples as the index of their clusters """
        # One prediction for each sample
        y_pred = np.zeros(np.shape(X)[0])
        for cluster_i in range(len(clusters)):
            cluster = clusters[cluster_i]
            for sample_i in cluster:
                y_pred[sample_i] = cluster_i
        return y_pred

    def predict(self, X):
        """ Do Partitioning Around Medoids and return the cluster labels """
        # Initialize medoids randomly
        medoids = self._init_random_medoids(X)
        # Assign samples to closest medoids
        clusters = self._create_clusters(X, medoids)

        # Calculate the initial cost (total distance between samples and
        # corresponding medoids)
        cost = self._calculate_cost(X, clusters, medoids)

        # Iterate until we no longer have a cheaper cost
        while True:
            best_medoids = medoids
            lowest_cost = cost
            for medoid in medoids:
                # Get all non-medoid samples
                non_medoids = self._get_non_medoids(X, medoids)
                # Calculate the cost when swapping medoid and samples
                for sample in non_medoids:
                    # Swap sample with the medoid
                    new_medoids = medoids.copy()
                    new_medoids[medoids == medoid] = sample
                    # Assign samples to new medoids
                    new_clusters = self._create_clusters(X, new_medoids)
                    # Calculate the cost with the new set of medoids
                    new_cost = self._calculate_cost(
                        X, new_clusters, new_medoids)
                    # If the swap gives us a lower cost we save the medoids and cost
                    if new_cost < lowest_cost:
                        lowest_cost = new_cost
                        best_medoids = new_medoids
            # If there was a swap that resultet in a lower cost we save the
            # resulting medoids from the best swap and the new cost 
            if lowest_cost < cost:
                cost = lowest_cost
                medoids = best_medoids 
            # Else finished
            else:
                break

        final_clusters = self._create_clusters(X, medoids)
        # Return the samples cluster indices as labels
        return self._get_cluster_labels(final_clusters, X)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容