深度学习以及卷积基础

前言

image

深度学习是机器学习的一个分支,是基于数据来学习表示数据的一组算法。下面我们列出最受欢迎的一些深度学习算法。

  • 卷积神经网络

  • 深度信念网络

  • 自动编码器

  • 递归神经网络(RNN / LSTM / GRU)

  • 对抗生成网络(GAN)

深度学习的目的之一是他们将取代手工制作的特征提取。这个想法是,他们将从给定的数据中“学习”到所需的最佳特征。

image

层与层

深度学习模型由多层构成,在人工神经网络的情况下,具有2个以上隐藏层的多层感知器(MLP)已经是深度模型。
作为一个经验法则,深层模型有可能比浅层模型表现更好。但是,越深的神经网络你需要越多的数据来避免过拟合。

image

层类型

这里列出一些最常用的图层:

  1. 卷积层

  2. 最大/平均池化层

  3. Dropout层

  4. 批量标准化层

  5. 全连接层

  6. Relu,Tanh,Sigmoid层(非线性层)

  7. Softmax,交叉熵,SVM,欧几里得(损失层)

避免过拟合(正则化)

除了获得更多的数据之外,还有一些技巧用于解决过度拟合问题,这里列出了一些最常见的技术:

  • Dropout

  • L2正则化

  • 数据增强

Dropout

这是一种在训练期间随机关闭全连接层中一些神经元的技术。

image

Dropout迫使全连接层以不同的方式学习相同的概念。

L2正则化

最常见的正则化形式是L2正则化,L2正则化是给损失函数添加一个额外的惩罚项,这个惩罚项也就是我们正在优化的所有权重/参数的平方值。对于神经网络的每一个参数ω,我们加入一项0.5λω²到损失函数中去,λ表示正则化强度的参数,当我们反向传播计算导数时,我们只是用了0.5λ作为正则化的强度。由于使用这种正规化,非常高价值的权重受到严重惩罚。所以我们更倾向于使用一层的所有权重作为输入,而不是少数一些权重带替代。这种方法的效果比较好,因为我们的模型权重将被最大限度地利用,并且我们有更少未使用的权重。

除了L2正则化之外,还有L1正则化和Max Norm,但这里没有讨论,因为L2一般表现更好。

数据增强

通过对输入数据进行一些转换,可以合成新的训练样例。例如,进行图像翻转或随机移动RGB值。在2012年Imagenet竞赛期间,Alex Krizhevesky(Alexnet)使用了2048倍的因子进行数据增强,这意味着用于训练其模型的数据集实际上比开始时大2048倍,并且在不使用数据增强的情况下改进了泛化。

image
image

分层的特征表示

它是让学习算法找到从输入到更深层的最佳表示。
浅层学会用简单的形式表示数据,深层用前面学到的特征来学习更高纬度的特征来表示数据。

image
image

卷 积

卷积是一种数学运算,它对两个函数(信号)乘积进行积分,其中一个信号是被翻转。例如下面我们对2个信号f(t)和g(t)进行卷积。

image

首先要做的是水平翻转(180度)信号g,然后将翻转后的g滑过f,对应相乘并累加所有的值。
conv(a,b)== conv(b,a)的结果是一样的,
在这种情况下,规定蓝色信号 F(τ)F(τ) 是我们的输入信号和 G(t )G(Ť) 作为我们的卷积核,当使用卷积来过滤信号时使用术语卷积核。

输出一维信号

在一维卷积的情况下,输出尺寸计算如下:
outputSize=(InputSize−KernelSize)+1

卷积的应用

人们在以下用例中对信号处理使用卷积:

  • 滤波器信号(1D音频,2D图像处理)

  • 检查一个信号与另一个信号的相关程度

  • 在信号中查找模式

在matlab和python(numpy)中的简单例子

下面我们将两个信号x =(0,1,2,3,4)与w =(1,-1,2)进行卷积。

image
image

手工操作

为了更好地理解卷积的概念,我们手工完成上面的例子。我们要卷积2个信号(x,w)。首先是水平翻转W(或向左旋转180度)

image

之后,我们将翻转的W滑过输入X.

image

注意到在步骤3,4,5中,翻转后的窗口完全位于输入信号的内部。称为“有效”卷积。在翻转窗口不完全位于输入窗口(X)内部的情况下,我们可以将其视为零,只计算位于窗口内的数据,例如在步骤1中,我们将1乘以零,其余部分将被忽略。

对输入进行填充

为了保持卷积结果大小与输入大小相同,并避免称为循环卷积的效应,我们用零填充信号。
你把零放在哪个位置取决于你想要做什么,例如:在1D的情况下,你可以在每一端连接它们,但在2D上它通常放置在原始信号周围。

image
image

在matlab上,你可以使用命令'padarray'来填充输入信号:

x

x(:,:,1) =

 1     1     0     2     0
 2     2     2     2     1
 0     0     0     2     1
 2     2     2     2     1
 2     0     2     2     1

x(:,:,2) =

 2     1     0     0     0
 0     2     0     1     0
 1     0     1     2     0
 1     2     0     2     1
 1     2     1     2     2

x(:,:,3) =

 2     1     1     2     2
 1     1     1     0     0
 2     0     1     0     2
 0     2     0     2     1
 0     0     2     1     0

padarray(x,[1 1])

ans(:,:,1) =

 0     0     0     0     0     0     0
 0     1     1     0     2     0     0
 0     2     2     2     2     1     0
 0     0     0     0     2     1     0
 0     2     2     2     2     1     0
 0     2     0     2     2     1     0
 0     0     0     0     0     0     0

ans(:,:,2) =

 0     0     0     0     0     0     0
 0     2     1     0     0     0     0
 0     0     2     0     1     0     0
 0     1     0     1     2     0     0
 0     1     2     0     2     1     0
 0     1     2     1     2     2     0
 0     0     0     0     0     0     0

ans(:,:,3) =

 0     0     0     0     0     0     0
 0     2     1     1     2     2     0
 0     1     1     1     0     0     0
 0     2     0     1     0     2     0
 0     0     2     0     2     1     0
 0     0     0     2     1     0     0
 0     0     0     0     0     0     0

将卷积转化为计算图

将操作转化为计算图,更容易计算每个节点参数的偏导数,这里我们演示将之前的一维卷积转化为计算图,这也可以扩展到二维卷积。

image

计算图的创建是在翻转的内核完全插入被卷积的数据之前的。

image

之后我们将使用这个图来推断卷积层的输入(x)和权重(w)的梯度。

2D卷积

现在我们延伸到第二个维度。2D卷积被用作图像滤波器。下面是一个2D图像卷积的例子:

image

Matlab与Python示例

image

手工操作

首先,我们应该翻转内核,然后在输入信号上滑动内核。

image
image

步 长

默认情况下,当我们进行卷积运算时,我们的窗口每次移动一个像素(步幅= 1),但是在卷积神经网络中我们需要移动多个像素。例如,在使用大小为2的内核进行卷积时,我们将使用2的步幅。将步幅和内核大小都设置为2将导致输出沿着两个维度恰好为输入大小的一半。
观察红色内核窗口下方的移动远远多于一个像素。

image

2D的输出尺寸

下面提供了一个公式计算我们卷积之后的输出尺寸 。
如果我们考虑将由P填充的空间大小[H,W]的输入与大小为F的方形核并使用步长S进行卷积,那么卷积的输出大小被定义为:

image

F是内核的大小,通常我们使用方形内核,所以F既是内核的宽度又是高度。

实现卷积运算

下面的示例将对一个5x5x3的输入进行卷积,其中具有以下参数Stride=2,Pad=1,F=3(3x3内核)和K=2(两个滤波器)的conv层。
我们的输入有3个通道,所以需要3x3x3的内核权重。有2个过滤器(K = 2),所以最后会有2个输出。计算这两个输出的大小为:(5 - 3 + 2)/ 2 + 1 = 3。得到最终的尺寸(3x3x2)。

image

仔细看看这个例子,我们需要计算2个卷积,不要忘了给每个3x3x3滤波器(w0,w1)添加偏差。

image

参考文献


个人技术博客:https://blog.csdn.net/u013709270
微信:TonyJeemy520 加个人微信拉你进机器学习、深度学习交流群,请备注 : 来自简书
QQ交流群:651616387 请备注 : 来自简书
微信公众号:机器学习算法工程师 ----二维码见下图


扫码关注微信号:机器学习算法工程师,更多干货分享, 或加个人微信,拉你进机器学习、深度学习交流群

image

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容