单细胞marker基因表达密度图-(还有一个包装函数)

有小伙伴说想要做单细胞marker基因表达密度图,我一想,好像之前是做过的(单细胞marker基因可视化的补充---密度图与等高线图)。但是他又说没有文献中的效果。后来我一看,是因为着色的问题。其实用Nebulosa包(GitHub - powellgenomicslab/Nebulosa: R package to visualize gene expression data based on weighted kernel density estimation)就可以完成。


首先我们读入数据,分析下marker基因,用于作图:


setwd('D:\\KS项目\\公众号文章\\单细胞marker基因密度图')

library(Seurat)
library(Nebulosa)
library(ggnetwork)
library(dplyr)

markers <- FindAllMarkers(mouse_data, logfc.threshold = 0.5, min.pct = 0.5)
markers_plot <- markers %>% 
  group_by(cluster) %>%
  slice(1:2)

需要注意,这里我算是投机取巧了,用了一个和这个作图毫无关系的包ggnetwork,主要的目的是用他的theme_blank()主题,一次性将所有清空,当然也可以自己慢慢写,不过有现成的,为啥不用呢?单个图看看:

plot_density(mouse_data, features = c("Ltf"),
             pal = 'magma', raster = T, size = 0.8) &
  theme_blank()&#这个是ggnetwork里面的主题,可以去掉所有ggplot背景
  theme(legend.frame = element_rect(colour = "black"),
        legend.ticks = element_line(colour = "black", linewidth  = 0),
        legend.key.width = unit(0.3, "cm"),
        legend.key.height = unit(0.8, "cm"),
        legend.title = element_text(color = 'black', face = "bold", size=8))

想要黑夜效果,背景设置呈黑色即可:

plot_density(mouse_data, features = c("Ltf"),
             pal = 'magma', raster = T, size = 0.8) &
  theme_blank()&
  theme(panel.background = element_rect(fill = "black"))&
  theme(legend.frame = element_rect(colour = "black"),
        legend.ticks = element_line(colour = "black", linewidth  = 0),
        legend.key.width = unit(0.3, "cm"),
        legend.key.height = unit(0.8, "cm"),
        legend.title = element_text(color = 'black', face = "bold", size=8))

我们借助Nebulosa,将上面的过程包装为一个函数,还是那句话,受累麻烦的事我们来解决,您轻松即可,先看看函数参数:需要注意的是,如果你只想框选某一类celltype,理想模式是这群celltype是单独聚类的,没有散落在其他类群,否则将会全部框选,效果不好,建议使用AI/PS添加。


很多是默认参数,我们演示一下:

#1黑夜模式,框选所有celltype轮廓
single_CM_density(object = mouse_data,
                  features = "Ltf",
                  night = T)

#2黑夜模式,只选择需要的celltype,我这里选择PMN(7),聚类好
#设置这个模式,需要设置参数idents
single_CM_density(object = mouse_data,
                  features = "Ltf",
                  night = T,
                  idents = "celltype",
                  label_celltype = "PMN(7)")

批量出一下黑夜模式的图:完美!这质感不就上去了嘛。

#批量出图
plist2 <- list()
for (i in 1:nrow(markers_plot)) {

  p = single_CM_density(object = mouse_data,
                        features = markers_plot$gene[i],
                        night = T)
  plist2[[i]] <- p
}



#拼图
library(cowplot)
plot_grid(plotlist = plist2, ncol = 4)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容