halcon中的图像预处理

图像的灰度变化(图像增强)    

       灰度图变换的目的:图像灰度值变换主要为了提高图像的对比度。对比度就是图像的清晰程度,不同的物体与背景是否对比清晰。包括灰度图变换以及直方图变换等。

        灰度图线性变换:将图像的像素点的灰度值按照线性变换函数进行变换。g(x,y)=af(x,y)+b

        图像取反:g(x,y)=255-f(x,y)

        add_image() 图像相加

        invert_image()图像取反

        灰度图的非线性变换:图像灰度值采用非线性函数进行变换。常用的为对数函数与指数函数。

        g(x,y)=a+bln[f(x,y)+1]一般是提高地范围的像素,压缩高范围的像素。

        g(x,y)=a^[f(x,y)]+b 相反,提高高范围的像素,压缩低范围的像素。

        log_image(inputImg,outputImg,'e')

        exp_image(inputImg,outputImg,'e')

灰度直方图变换

        对图像中的像素灰度做映射变换。

        直方图均衡变化:equ_histo_image(InputImg,cutputImg)        

图像滤波

        作用:去除图像中的干扰(噪声)。噪声一般是由外界干扰产生的,比如灰尘、热噪等。

        均值滤波:对于模糊图像内部噪声具有很好的作用。

        滤波模板是描述滤波器大小,里边存储着具体的数值。

        滤波模板大小是指滤波矩阵的纬度2*2[11;11]

        mean_inage()

高斯滤波

        根据高斯函数,考虑权重的滤波。gauss_filter()

中值滤波        

        对单个噪声点具有很好的平滑作用,特别是椒盐噪声。 medina_image()

导向滤波

对于边缘具有很好的保持作用,同时能够对其他地方去除噪声,是很受欢迎并且常用的去噪方法。 guided_filter()

        

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容