LeetCode-70-爬楼梯🎖🎖

LeetCode-70-爬楼梯

70. 爬楼梯

难度简单

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

  1. Climbing Stairs

Easy

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Example 1:

Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

  • 类似斐波那契数列的递归

F(N)=F(N-1)+F(N-2)

到达第N台阶,可以通过N-1的台阶跨一步,或者N-2的台阶一次性跨两步两种方式完成,所以是斐波那契数列方式

F(N)=F(N-1)+F(N-2)   f(2)=2 f(1)=1
int[][] base = { { 1, 1 }, { 1, 0 } }; 
res = base^(N-2)
F(N)=`2*res[0][0]+ 1*res[1][0]`

时间复杂度可以做到O(longN)

class Solution {
    public static int climbStairs(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        int[][] base = { { 1, 1 }, { 1, 0 } };
        int[][] res = matrixPower(base, n - 2);
        return 2 * res[0][0] + res[1][0];
    }
    
    public static int[][] matrixPower(int[][] m, int p) {
        int[][] res = new int[m.length][m[0].length];
        for (int i = 0; i < res.length; i++) {
            res[i][i] = 1;
        }
        
        // res = 矩阵中的1
        int[][] tmp = m;// 矩阵1次方
        for (; p != 0; p >>= 1) {
            if ((p & 1) != 0) {
                res = muliMatrix(res, tmp);
            }
            tmp = muliMatrix(tmp, tmp);
        }
        return res;
    }

    // 两个矩阵乘完之后的结果返回
    public static int[][] muliMatrix(int[][] m1, int[][] m2) {
        int[][] res = new int[m1.length][m2[0].length];
        for (int i = 0; i < m1.length; i++) {
            for (int j = 0; j < m2[0].length; j++) {
                for (int k = 0; k < m2.length; k++) {
                    res[i][j] += m1[i][k] * m2[k][j];
                }
            }
        }
        return res;
    }
}
image-20210520094551824

斐波那契数列-矩阵求法

矩阵乘法+空间换时间(减少乘法,取模运算)

数列的递推公式为:f(1)=1,f(2)=2,f(n)=f(n-1)+f(n-2)(n>=3)

用矩阵表示为:

img

进一步,可以得出直接推导公式:

img

由于矩阵乘法满足结合律,在程序中可以事先给定矩阵的64,32,16,8,4,2,1次方,加快程序的执行时间。(有些题目需要取模运算,也可以事先进行一下)。给定的矩阵次幂,与二进制有关是因为,如下的公式存在解满足Xi={0或1}:

img

为了保证解满足 Xi={0或1},对上述公式的求解从右向左,即求解顺序为Xn,Xn-1,Xn-2,....,X1,X0。

Pow(x, n)表示就x的n次方的值

img
public class FibonacciProblem {

    public static int f1(int n) {//暴力递归
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return 1;
        }
        return f1(n - 1) + f1(n - 2);
    }

    public static int f2(int n) {//线性乘法
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return 1;
        }
        int res = 1;
        int pre = 1;
        int tmp = 0;
        for (int i = 3; i <= n; i++) {
            tmp = res;
            res = res + pre;
            pre = tmp;
        }
        return res;
    }

    public static int f3(int n) {//数列矩阵乘法
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return 1;
        }
        // [ 1 ,1 ]
        // [ 1, 0 ]
        int[][] base = { 
                { 1, 1 }, 
                { 1, 0 } 
                };
        int[][] res = matrixPower(base, n - 2);
        return res[0][0] + res[1][0];
    }

    public static int[][] matrixPower(int[][] m, int p) {
        int[][] res = new int[m.length][m[0].length];
        for (int i = 0; i < res.length; i++) {
            res[i][i] = 1;
        }
        
        // res = 矩阵中的1
        int[][] tmp = m;// 矩阵1次方
        for (; p != 0; p >>= 1) {
            if ((p & 1) != 0) {
                res = muliMatrix(res, tmp);
            }
            tmp = muliMatrix(tmp, tmp);
        }
        return res;
    }

    // 两个矩阵乘完之后的结果返回
    public static int[][] muliMatrix(int[][] m1, int[][] m2) {
        int[][] res = new int[m1.length][m2[0].length];
        for (int i = 0; i < m1.length; i++) {
            for (int j = 0; j < m2[0].length; j++) {
                for (int k = 0; k < m2.length; k++) {
                    res[i][j] += m1[i][k] * m2[k][j];
                }
            }
        }
        return res;
    }

    public static int s1(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        return s1(n - 1) + s1(n - 2);
    }

    public static int s2(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        int res = 2;
        int pre = 1;
        int tmp = 0;
        for (int i = 3; i <= n; i++) {
            tmp = res;
            res = res + pre;
            pre = tmp;
        }
        return res;
    }

    public static int s3(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        int[][] base = { { 1, 1 }, { 1, 0 } };
        int[][] res = matrixPower(base, n - 2);
        return 2 * res[0][0] + res[1][0];
    }
}

扩展问题——奶牛问题

有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。假设第一年就一头老母牛,第二年就2头母牛,第三牛就3头母牛,第四年就4头母牛,第五年就6头。第六年就9头。请编程实现在第n年的时候,共有多少头母牛?

image-20210520112940341

思路:今年的牛的数目=去年的牛的数目+三年前牛的数目 即:f(n)=f(n-1)+f(n-3)

f(n)=f(n-1)+f(n-3)=1*f(n-1)+0*f(n-2)+1*f(n-3) 最后的递推为1*f(n-3) 表示一个3阶问题

|F(N),F(N-1),F(N-2),| = |F(3),F(2),F(1)| * (|3*3|)^N-3 3*3的矩阵的N-3次方

image-20210520113954771

计算出a~i

image-20210520115008809
image-20210520115710402
public static int c1(int n) {//暴力递归
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2 || n == 3) {
            return n;
        }
        return c1(n - 1) + c1(n - 3);
    }

    public static int c2(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2 || n == 3) {
            return n;
        }
        int res = 3;
        int pre = 2;
        int prepre = 1;
        int tmp1 = 0;
        int tmp2 = 0;
        for (int i = 4; i <= n; i++) {
            tmp1 = res;
            tmp2 = pre;
            res = res + prepre;
            pre = tmp1;
            prepre = tmp2;
        }
        return res;
    }

    public static int c3(int n) {//数列矩阵乘法 O(longN)
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2 || n == 3) {
            return n;
        }
        int[][] base = { 
                { 1, 1, 0 }, 
                { 0, 0, 1 }, 
                { 1, 0, 0 } };
        int[][] res = matrixPower(base, n - 3);//乘法可以做到 O(longN)
        return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
    }
继续扩展-又假如每头牛的寿命只有十年,则 f(n)=f(n-1)+f(n-3)-f(n-10) 表示一个10阶问题

爬楼梯-台阶问题

LeetCode-70-爬楼梯

image-20210520120951454

F(N)=F(N-1)+F(N-2) f(2)=2 f(1)=1

int[][] base = { { 1, 1 }, { 1, 0 } }; res = base^(N-2)

F(N)=2*res[0][0]+ 1*res[1][0]

public static int s1(int n) {//暴力递归 O(2^N)
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        return s1(n - 1) + s1(n - 2);
    }

    public static int s2(int n) {//暴力递归 线性乘法  
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        int res = 2;
        int pre = 1;
        int tmp = 0;
        for (int i = 3; i <= n; i++) {
            tmp = res;
            res = res + pre;
            pre = tmp;
        }
        return res;
    }

    public static int s3(int n) {//数列矩阵乘法 O(longN)
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return n;
        }
        int[][] base = { { 1, 1 }, { 1, 0 } };
        int[][] res = matrixPower(base, n - 2);
        return 2 * res[0][0] + res[1][0];
    }

给定一个数N,想象只由0和1两种字符,组成的所有长度为N的字符串,如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标
返回有多少达标的字符串!

  • 暴力解

N个长度由0|1组成的字符串的个数 2^N次方个 检验是否有效O(N) 所以总的时间复杂度 O(2^N * N)

  • 斐波那契数列-矩阵求法
image-20210520124307949
image-20210520124445054

所以F(N) = F(N-1)+F(N-2) 斐波那契数列求解 F(1)=1 F(2) = 2

image-20210520125623122
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容