泛函-变分法

这里详细讲解 欧拉-拉格朗日方程推导 的推导。

1.微分

微分为例:

微分

这里 {x_0}{x} 中一个点 ,\Delta x 也就是 dx ,而 \Delta y 就是 f({x_0} + \Delta x) - f({x_0})
其中斜率(变化率,导数) A=\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = f'(x)
这里的假设是,当 \Delta x 也就是 dx \to 0 时,\Delta y \to dy ,因此 {x_0} 这一点的斜率 A,也就是导数 f'({x_0}) = {{dy} \over {dx}}
其中 \Delta y 定义为 \Delta y = A\Delta x + o(\Delta x)(\Delta x \to 0)

2.泛函

F(y) = \int_{{x_1}}^{{x_2}} {L(x,y,y')dx}

基本概念:其中 F(y) 可以看出是一个值,因此 泛函 可以看作为函数 y(x) 到数值 F(y) 的映射。假设 {y_0} 是其中 F 取极值时的一条曲线,而 \varepsilon \eta (x) 可以看作微分里面的 \Delta x (其中 \varepsilon 是一个很小的数,其中 \eta ({x_1}) = \eta ({x_2}) = 0 ),{y_0} + \varepsilon \eta (x) 可以看作微分里面的 {x_0} + \Delta x 。这里可以将 y(x){\eta (x)} 看作已经确定的函数,这里就可以将 F(y) 看作是关于 \varepsilon 的函数。

1.偏导和全微分:

  • 偏导
    z = f(x,y)

{{\partial f} \over {\partial y}} = \mathop {\lim }\limits_{{\rm{\Delta }}y \to 0} {{f(x,y + {\rm{\Delta }}y) - f(x,y)} \over {{\rm{\Delta }}y}}

{{\partial f} \over {\partial x}} = \mathop {\lim }\limits_{{\rm{\Delta }}x \to 0} {{f(x,y + {\rm{\Delta }}x) - f(x,y)} \over {{\rm{\Delta }}x}}

  • 全微分
    dz = {{\partial f} \over {\partial x}}dx + {{\partial f} \over {\partial y}}dy

F(y) = \int_{{x_1}}^{{x_2}} {L(x,y,y')dx}

2.变分推导(欧拉-拉格朗日方程)

A[\varepsilon ] = F(y) = F({y_0} + \varepsilon \eta (x))

=\int_{{x_1}}^{{x_2}} {L(x,{y_0} + \varepsilon \eta (x),{y_0}' + \varepsilon \eta '(x))dx}

\buildrel {y(x,\varepsilon ) = {y_0} + \varepsilon \eta } \over \longrightarrow \int_{{x_1}}^{{x_2}} {L(x,y(x,\varepsilon ),y'(x,\varepsilon ))dx}

其中有
y(x,\varepsilon ) = {y_0} + \varepsilon \eta

{{\partial y} \over {\partial \varepsilon }} = \eta (x)

y'(x,\varepsilon ) = {d \over {dx}}y(x,\varepsilon ) = {d \over {dx}}({y_0} + \varepsilon \eta ) = {y_0} + \varepsilon \eta '

因此有

{{dA} \over {d\varepsilon }} = \int_{{x_1}}^{{x_2}} {{{dL} \over {d\varepsilon }}} dx
这一步需要用到 {L(x,y(x,\varepsilon ),y'(x,\varepsilon ))} 以及 链式求导法则
= \left[ {\int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial x}}{{\partial x} \over {\partial \varepsilon }}} \right) + \left( {{{\partial L} \over {\partial y}}{{\partial y} \over {\partial x}}{{\partial x} \over {\partial \varepsilon }} + {{\partial L} \over {\partial y}}{{\partial y} \over {\partial \varepsilon }}} \right) + \left( {{{\partial L} \over {\partial y'}}{{\partial y'} \over {\partial x}}{{\partial x} \over {\partial \varepsilon }} + {{\partial L} \over {\partial y'}}{{\partial y'} \over {\partial \varepsilon }}} \right)} } \right]dx
其中有
{{\partial x} \over {\partial \varepsilon }} = 0

{{\partial y} \over {\partial \varepsilon }} = \eta (x)

{{\partial y'} \over {\partial \varepsilon }} = {{\partial y'(x,\varepsilon )(x)} \over {\partial \varepsilon }} = {{\partial \left( {{y_0}' + \varepsilon \eta '(x)} \right)} \over {\partial \varepsilon }} = \eta '(x)

因此
{{dA} \over {d\varepsilon }} = \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y}}{{\partial y} \over {\partial \varepsilon }} + {{\partial L} \over {\partial y'}}{{\partial y'} \over {\partial \varepsilon }}} \right)} dx

= \int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y}}\eta (x)} dx + \int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y'}}\eta '(x)} dx
对上面右边式子进行 分部积分
\int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y'}}\eta '(x)} dx = \left. {{{\partial L} \over {\partial y'}}\eta (x)} \right|_{{x_1}}^{{x_2}} - \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y'}}} \right)'\eta (x)} dx

\left. {{{\partial L} \over {\partial y'}}\eta (x)} \right|_{{x_1}}^{{x_2}}\buildrel {\eta ({x_2}) = \eta ({x_1}) = 0} \over \longrightarrow \left. {{{\partial L} \over {\partial y'}}\eta (x)} \right|_{{x_1}}^{{x_2}} = 0
从上面可以得到

\int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y'}}\eta '(x)} dx = - \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y'}}} \right)'\eta (x)} dx

因此有
{{dA} \over {d\varepsilon }} = \int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y}}\eta (x)} dx + \int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y'}}\eta '(x)} dx

= \int_{{x_1}}^{{x_2}} {{{\partial L} \over {\partial y}}\eta (x)} dx - \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y'}}} \right)'\eta (x)} dx

= \int_{{x_1}}^{{x_2}} {\left[ {{{\partial L} \over {\partial y}}\eta (x) - \left( {{{\partial L} \over {\partial y'}}} \right)'\eta (x)} \right]} dx

= \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y}} - {d \over {dx}}{{\partial L} \over {\partial y'}}} \right)} \eta (x)dx
因为我们要求取 A[\varepsilon ]最小值,因此有 {{dA} \over {d\varepsilon }} = 0 ,那么就有
{{dA} \over {d\varepsilon }} = \int_{{x_1}}^{{x_2}} {\left( {{{\partial L} \over {\partial y}} - {d \over {dx}}{{\partial L} \over {\partial y'}}} \right)} \eta (x)dx = 0

最终得到:{{\partial L} \over {\partial y}} - {d \over {dx}}{{\partial L} \over {\partial y'}} = 0 或者 \eta (x) = 0

\eta (x) = 0 说明对 {{y_0}} 无扰动时,A 能取得极值,但它对 {{y_0}} 的具体形式无任何帮助(因为我们想要求取{{y_0}} 的具体表达式,因此我们寄希望于在满足A取极值时获得一个关于{{y_0}} 的微分方程);因此最优函数 {{y_0}} 的具体形式由第一个解确定:
{{\partial L} \over {\partial y}} - {d \over {dx}}{{\partial L} \over {\partial y'}} = 0
其中 y = {y_0} + \varepsilon \eta (x)y = \mathop {\lim }\limits_{\varepsilon \to 0} {y_0} + \varepsilon \eta (x) = {y_0}

因此,我们可以通过上述的 欧拉-拉格朗日方程 求取变分。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容