欧拉-拉格朗日方程的推导和理解

欧拉-拉格朗日方程,Eular-Lagrange equation,其数学意义不用多去讲了。在实际应用中,它对在动力学(特别是多体动力学和有限元的理论基础)分析中,得出系统的运动微分方程(组)进行分析有很大的价值。教科书和网络上关于这个方程的推导步骤和解释有很多,这里也写一下自己对推导过程的温习和理解。

极值的条件

先复习一下函数上的函数值处于极值的条件:

当函数值相对自变量的导数等于零时,即当自变量发生微小的变化(增加或减少)时,函数值仍不趋向发生改变,函数值处于极值,该点的自变量是产生函数极值的自变量。

函数的极值条件:导数等于0时

函数的英文是function,经常使用小写。泛函的英文是Functional,经常使用大写。接下来极值条件延申到泛函集合中当泛函值处于极值的条件:当对其中一个函数施加一个微小的扰动(变分)使函数发生微小的变化后,函数所映射的泛函值仍不趋向发生改变时,其所映射的泛函值处于极值,该函数是使泛函值处于极值的函数。联想到函数极值下函数导数的条件,泛函值在处于极值时其对函数的扰动量(变分)求导也等于零。即它是一个即使施加了小小的扰动后也不趋于改变泛函值的函数。

泛函的极值条件:泛函变分 / 函数变分 = 0

泛函的积分表达式

泛函值的表达式是一个函数的起点和终点的积分表达式,每一个泛函积分值中的微元值由源函数所决定,包括函数的自变量值、函数值(因变量值)、以及函数的导数构成。函数到泛函值的映射关系是比较灵活的,它不止取决于当前的函数值,也取决于函数的自变量值和导数值,因此它的表达式为:

泛函值的积分表达式,函数变分的积分表达式

经常拿来做例题的泛函值有两个。一个泛函值是函数曲线从起点到终点的长度,例题要去证明最短长度的函数是两点间的直线;另一个例题是一个小球沿着函数曲线从起点到终点落下所需的时间,例题要去证明耗时最短的函数是一条摆线(最速降线)。在第一个例子中,泛函微分值等于微小的“弧长”单元;第二个例子中,泛函微分值等于微小的“时长”单元(“弧长”单元除以因势能转化为动能后所求得的瞬时速度)

泛函表达式在极值条件下的逐项推导

通过偏微分公式可以得出,泛函值对函数变分值的导数如下:

泛函值变分的积分表达式,通过偏微分展开

看这个部分:(泛函值对函数值的偏微分)乘以(变分) + (泛函值对函数值导数的偏微分)乘以(变分的导数)。一个乘子是变分,另一个乘子是变分的导数,需要通过方法将乘子统一,以便于进行进一步推导。

后者等于 ((泛函值对函数值导数的偏微分)乘以变分)在两端点上的差值 减去((泛函值对函数值导数的偏微分)的导数 )乘以 (变分)

通过分步积分法统一乘子

因为两个端点是固定的,所以在两个端点处的变分为0,因此泛函对变分的导数为零的条件变为如下形式

泛函值变分的表达式

变分是一个趋于零的无穷小量,因此需要的关系式变为

极值条件下得出欧拉-拉格朗日方程

这便是欧拉-拉格朗日方程的表达式。也就是对函数使其泛函在处于极值下的要求。

公式能不能简单理解

感觉不太能。一开始想尝试好多思路去使用简单的比喻的方式,或者是直觉化的思路去理解这个公式,但想不太清楚。“两点之间直线最短”这种简单直觉所能理解的结论,直觉上好像不用去证明了,如果需要证明才能想清楚,那就不是直觉了。比如就尝试两点之间直线最短这个例子,想象起点是绳子的一端被钉子固定住,终点是一个位置固定的滑轮,当滑轮朝一个方向旋转时,绳子被“收紧”,绳子一部分的长度从AB两点之间收回终点的滑轮里,就像卷尺一样。朝另一个方向旋转时,绳子被“松弛”,藏在滑轮里的绳子被推出来。那么泛函是两点之间的绳子的长度,函数是绳子的形状。假设滑轮里有一个弹簧,就像卷尺一样,它趋向于减少绳子外露的长度。函数的变分,就好比我们用手去拨这个绳子让它产生形状的变化。泛函的变分,就是绳子形状变化的同时,绳子退回滑轮/伸出滑轮的长度。函数曲线的极值,就在绳子被拉直的时候,因为在那个时候去用手拨动绳子,就像琴弦一样,滑轮里绳子长度的变化趋向于不变。但是再往下就不好比喻了,因为这个比方里多了假设:绳子受到滑轮弹簧的力。目前还是没想到能直观理解拉格朗日方程的方法。

“两点之间直线最短”的泛函比喻

不过物理角度就容易一些,在最常见的保守系统中,物体的惯性力(质量乘以加速度)减去因势能差变化所产生的力等于零。

分析力学里的欧拉-拉格朗日方程

从数学到物理

为什么在保守体系的动力学运动微分方程中,拉格朗日量,也就是泛函值等于T-V

我这样理解:在保守体系中,物体在每一个时刻不是在增加动能减少势能的路上,就是在增加势能减少动能的路上。从而这个时间上微分值定义为动势能之差。因为动能和势能之间的转化关系,使得从起始时刻到最终时刻的泛函(作用量)处于最小值。

最后通过欧拉-拉格朗日公式可以得出运动微分方程的基本步骤:

1、获取系统总动能+总势能的表达式,得到拉格朗日量L=T-V的表达式;

2、将拉格朗日量通过欧拉-拉格朗日方程进行展开(对速度、加速度、位置求导),得出基于力、速度、加速度、位置的运动微分方程(组);

3、如需分析系统的稳定性,对微分方程组进行转化可得到一个y'=Ay的特征矩阵乘以向量的方程。此时通过求解 Det(A)可得出特征矩阵的特征值lambda (当lambda<0时,系统趋于渐进稳定,当lambda>0时,系统趋于不稳定。当lambda中包括虚数部分时,系统在趋于稳定/稳定的总的趋势下存在震荡。一个系统会求解出不止一个特征值,每个特征值都会对应一个特征向量,通过特征值分析稳定性,并且通过特征向量得出稳定/不稳定的趋势方向)

关于欧拉-拉格朗日方程的推导和理解就先到这里。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,390评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,821评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,632评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,170评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,033评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,098评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,511评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,204评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,479评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,572评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,341评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,893评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,171评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,486评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,676评论 2 335

推荐阅读更多精彩内容