空间向量法证明空间中的平行关系

空间向量法证明空间中的平行关系

方法二 空间向量法

使用情景:转化的直线或平面不容易找到,而一直条件方便建立空间直角坐标比较容易写出
解题步骤:

第一步 建立适当的空间直角坐标系;
第二步 分别写出各点的坐标,求出直线方向向量;
第三步 利用向量的关系得到直线和平面的关系即可.
【例】 如图所示,在正方体ABCD-A_1B_1C_1D_1中,MN分别是C_1CB_1C_1的中点.

求证:MN∥平面A_1BD.

【证明】如图所示,以D为原点,DADCDD_1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.

设正方体的棱长为1,则可得M(0,1,\dfrac{1}{2})N(\dfrac{1}{2},1,1)D(0,0,0)A1(1,0,1)B(1,1,0)

于是\stackrel{\longrightarrow}{MN}=(\dfrac{1}{2},0,\dfrac{1}{2})\stackrel{\longrightarrow}{DA_1}=(1,0,1)\stackrel{\longrightarrow}{DB}=(1,1,0)

设平面A_1BD的法向量是\vec{n}=(x,y,z)

\vec{n}\cdot \stackrel{\longrightarrow}{DA_1}=0,且\vec{n}\cdot \stackrel{\longrightarrow}{DB}=0

可得\begin{cases}x+z=0\\x+y=0\end{cases}

x=1,得y=-1z=-1

所以\vec{n}=(1,-1,-1)

\vec{n}\cdot \stackrel{\longrightarrow}{MN}=(0,-1,-1)\cdot(\dfrac{1}{2},0,\dfrac{1}{2})=0,,

所以\stackrel{\longrightarrow}{MN}\bot \vec{n}

又因为MN⊄平面A_1BD,所以MN∥平面A_1BD.

【总结】用向量证明线面平行的方法有:
(1)证明该直线的方向向量与平面的某一法向量垂直;
(2)证明该直线方向向量与平面内某直线的方向向量平行;
(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示;
(4)本题易错点为:只证明MN∥A_1D,而忽视MN⊄平面A_1BD.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 一、两向量的数量积及其应用 ****1****.数量积的定义**** 向量a=(a1,a2,a3),b=(b1,b...
    keeeeeenon阅读 5,082评论 0 5
  • 1 前言 OpenGL渲染3D模型离不开空间几何的数学理论知识,而本篇文章的目的就是对空间几何进行简单的介绍,并对...
    RichardJieChen阅读 6,960评论 1 11
  • 1.5、向量 一、平面向量 1、向量基础知识 向量概念:在数学中,把既有大小,又有方向的量叫做向量。判断一个量是否...
    椰子数学阅读 2,505评论 0 0
  • 2017-1-6. 求曲面,和平面的距离。 由题,设曲面上距平面最近的点为。所以,曲面在此处的法向量为。又显然有,...
    Raow1阅读 441评论 0 2
  • 立体几何是高考的重点内容之一,每年高考大题必有立体几何题,尤其是第一问主要考查证明线面垂直、平行,面面垂直等问题,...
    天马无空阅读 1,095评论 0 0