无标题文章


Jason Yosinski

机器学习 深度学习

Hello there! I'm Jason, a Ph.D.studentcandidate in Computer Science at Cornell. My research focuses on training and understanding neural networks for computer vision and robotics. I work withHod Lipsonand theCornell Creative Machines Laband sometimes as a visiting student withYoshua Bengioand theLISA Labat U. Montreal. My work is supported by aNASA Space Technology Research Fellowship. This summer of 2015 I'm in London working atGoogle DeepMind.

Jason Yosinski http://yosinski.com/ 


Understanding Neural Networks Through Deep Visualization

ICML DL Workshop paper|video|code and more info »

Recent years have produced great advances in training large, deep neural networks (DNNs), including notable successes in training convolutional neural networks (convnets) to recognize natural images. However, our understanding of how these models work, especially what computations they perform at intermediate layers, has lagged behind. Here we introduce two tools for better visualizing and interpreting neural nets. The first is a set of new regularization methods for finding preferred activations using optimization, which leads to clearer and more interpretable images than had been found before. The second tool is an interactive toolbox that visualizes the activations produced on each layer of a trained convnet. You can input image files or read video from your webcam, which we've found fun and informative. Both tools are open source.Read more »

Deep Neural Networks are Easily Fooled

CVPR paper|code|more »

Deep neural networks (DNNs) have recently been doing very well at visual classification problems (e.g. recognizing that one image is of a lion and another image is of a school bus). A recent study bySzegedy et al.showed that changing an image (e.g. of a lion) in a way imperceptible to humans can cause a network to label the image as something else entirely (e.g. mislabeling a lion a library). Here we show a related result: it is easy to produce images that are completely unrecognizable to humans, but that state-of-the-art DNNs believe to be recognizable objects with 99.99% confidence (e.g. labeling with certainty that white noise static is a lion). We show methods of producing fooling images both with and without the class gradient in pixel space. The results shed light on interesting differences between human vision and state-of-the-art DNNs.Read more »

How Transferable are Features in Deep Neural Networks?

NIPS paper|code|more »

Many deep neural networks trained on natural images exhibit a curious phenomenon: they all learn roughly the same Gabor filters and color blobs on the first layer. These features seem to begeneric— useful for many datasets and tasks — as opposed tospecific— useful for only one dataset and task. By the last layer featuresmustbe task specific, which prompts the question: how do features transition from general to specific throughout the network? In this paper, presented at NIPS 2014, we show the manner in which features transition from general to specific, and also uncover a few other interesting results along the way.Read more

Generative Stochastic Networks

First arXiv paper|ICML paper|Latest arXiv paper

Unsupervised learning of models for probability distributions can be difficult due to intractable partition functions. We introduce a general family of models called Generative Stochastic Networks (GSNs) as an alternative to maximum likelihood. Briefly, we show how to learn the transition operator of a Markov chain whose stationary distribution estimates the data distribution. Because this transition distribution is a conditional distribution, it's often much easier to learn than the data distribution itself. Intuitively, this works by pushing the complexity that normally lives in the partition function into the “function approximation” part of the transition operator, which can be learned via simple backprop. We validate the theory by showing several successful experiments on two image datasets and with a particular architecture that mimics the Deep Boltzmann Machine but without the need for layerwise pretraining.

EndlessForms.com

Watch the two minute intro video.Users on EndlessForms.com collaborate to produce interesting crowdsourced designs. Since launch, over 4,000,000 shapes have been seen and evaluated by human eyes. This volume of user input has produced somereally cool shapes. EndlessForms has received somefavorable press.Evolve your own shape »

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 最重要的事,只有一件 why 做事要抓本质。 每一件事都有其核心。把握本质,发...
    若心向阳阅读 186评论 0 1
  • 这一部分主要讲了提升学习能力的三个底层方法:反思,以教为学和刻意练习。 重点对反思这块内容进行分析和学习。 文章行...
    缘奇枫阅读 178评论 0 0
  • 3月25号那天,打开电脑,接上移动硬盘,一个窗口跳出来,我选择了第一个按钮,接着悲剧发生了,移动硬盘的资料在被删除...
    donna王采宁阅读 306评论 0 0
  • 日记 1 D1. 今天晚上我和爸爸兴致勃勃的(其实兴致勃勃的是妈妈,但爸爸还是努力配合了)召开了第一次家庭会议...
    白晓如梦阅读 452评论 4 3