graph algorithm- distanc/path

@ Shortest Path (unWeighted) with Neo4j

------------------------------------------------

['the unweighted shortest path from Amsterdam to London']

***************************************

MATCH (source:Place {id: "Amsterdam"}),

(destination:Place {id: "London"})

CALL gds.alpha.shortestPath.stream({

startNode: source,

endNode: destination,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

orientation: "UNDIRECTED"

}

}

})

YIELD nodeId, cost

RETURN gds.util.asNode(nodeId).id AS place, cost;

-----------------------------------------------------------

-----------------------------------------------------------------

The following procedure calculates the shortest unweighted path and then works out what the actual cost of that path would be:

****************************************************************

MATCH (source:Place {id: "Amsterdam"}),

(destination:Place {id: "London"})

CALL gds.alpha.shortestPath.stream({

startNode: source,

endNode: destination,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

orientation: "UNDIRECTED"

  }

}

})

YIELD nodeId, cost

WITH collect(gds.util.asNode(nodeId)) AS path

UNWIND range(0, size(path)-1) AS index

WITH path[index] AS current, path[index+1] AS next

WITH current, next, [(current)-[r:EROAD]-(next) | r.distance][0] AS distance

WITH collect({current: current, next:next, distance: distance}) AS stops

UNWIND range(0, size(stops)-1) AS index

WITH stops[index] AS location, stops, index

RETURN location.current.id AS place,

reduce(acc=0.0,

distance in [stop in stops[0..index] | stop.distance] |

acc + distance) AS cost;

----------------------------------------------------------------------

@ Shortest Path (Weighted) with Neo4j

************************************

MATCH (source:Place {id: "Amsterdam"}),

(destination:Place {id: "London"})

CALL gds.alpha.shortestPath.stream({

startNode: source,

endNode: destination,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

}

},

relationshipWeightProperty: "distance"

})

YIELD nodeId, cost

RETURN gds.util.asNode(nodeId).id AS place, cost;

-----------------------------------------------

@ A * algorithm -shortest path between Den Haag and London

@ latitude & longtitude of each nodee

********************************

MATCH (source:Place {id: "Den Haag"}),

      (destination:Place {id: "London"})

CALL gds.alpha.shortestPath.astar.stream({

startNode: source,

endNode: destination,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

}

},

relationshipWeightProperty: "distance",

propertyKeyLat: "latitude",

propertyKeyLon: "longitude"

})

YIELD nodeId, cost

RETURN gds.util.asNode(nodeId).id AS place, cost;

----------------------------------------------------------

@Yen's K-shortest Path - also find alternatives

*********************************************

MATCH (start:Place {id:"Gouda"}),

(end:Place {id:"Felixstowe"})

CALL gds.alpha.kShortestPaths.stream({

startNode: start,

endNode: end,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

}

},

relationshipWeightProperty: "distance",

k: 5

})

YIELD index, sourceNodeId, targetNodeId, nodeIds, costs, path

RETURN index,

[node in gds.util.asNodes(nodeIds[1..-1]) | node.id] AS via,

reduce(acc=0.0, cost in costs | acc + cost) AS totalCost;

--------------------------------------------------------------------

visualize the path

MATCH (a),(b),(c),(d)

WHERE a.id = 'Gouda' AND b.id = 'Rotterdam' AND c.id = 'Hoek van Holland' AND d.id='Felixstowe'

RETURN a,b,c,d


All Pairs Shortest Path( ASAP)

when to use:  understand alternate route when the shortest route is blocked or becomes suboptimal 

• Optimizing the location of urban facilities and the distribution of goods. One

example of this is determining the traffic load expected on different segments of a

transportation grid. 

• Finding a network with maximum bandwidth and minimal latency as part of a

data center design algorithm. 

******************************************

1. distance between two nodes



CALL gds.alpha.allShortestPaths.stream({

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

  }

 }

})

YIELD sourceNodeId, targetNodeId, distance

WHERE sourceNodeId < targetNodeId

RETURN gds.util.asNode(sourceNodeId).id AS source,

gds.util.asNode(targetNodeId).id AS target,

distance

ORDER BY distance DESC

LIMIT 10;


*************************************

2. all shortest path(weight)- all shortest paths-from farthest to shortest



CALL gds.alpha.allShortestPaths.stream({

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

  }

},

relationshipWeightProperty: "distance"

})

YIELD sourceNodeId, targetNodeId, distance

WHERE sourceNodeId < targetNodeId

RETURN gds.util.asNode(sourceNodeId).id AS source,

gds.util.asNode(targetNodeId).id AS target,

distance

ORDER BY distance DESC

LIMIT 10;


Single Source Shortest Path (SSSP)

when to use:

when you need to evaluate the optimal route from a fixed start point to all other individual nodes. Because the route is chosen based on the total path weight from the root, it’s useful for finding the best path to each node, but not necessarily when anodes need to be visited in a single trip                                                                


MATCH (n:Place {id:"London"})

CALL gds.alpha.shortestPath.deltaStepping.stream({

startNode: n,

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

  }

},

relationshipWeightProperty: "distance",

delta: 1.0

})

YIELD nodeId, distance

WHERE gds.util.isFinite(distance)

RETURN gds.util.asNode(nodeId).id AS destination, distance

ORDER BY distance;


Minimum Spanning Tree (weight)

note : SSSP evaluates the shortest path based on cumulative totals from the root, whereas Minimum Spanning Tree only looks at the cost of the next step.

when to use:

when you need the best route to visit all nodes. Because the route is chosen based on the cost of each next step, it’s useful when you must visit all nodes in a single walk.

• Minimizing the travel cost of exploring a country. 

• Visualizing correlations between currency returns. 

• Tracing the history of infection transmission in an outbreak. 


The following query finds a spanning tree starting from Amsterdam:

MATCH (n:Place {id:"Amsterdam"})

CALL gds.alpha.spanningTree.minimum.write({

startNodeId: id(n),

nodeProjection: "*",

relationshipProjection: {

EROAD: {

type: "EROAD",

properties: "distance",

orientation: "UNDIRECTED"

  }

},

relationshipWeightProperty: "distance",

writeProperty: 'MINST',

weightWriteProperty: 'cost'

})

YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

RETURN createMillis, computeMillis, writeMillis, effectiveNodeCount;



If we want to return the minimum weight spanning tree we can run the following query:

MATCH path = (n:Place {id:"Amsterdam"})-[:MINST*]-()

WITH relationships(path) AS rels

UNWIND rels AS rel

WITH DISTINCT rel AS rel

RETURN startNode(rel).id AS source,

endNode(rel).id AS destination,

rel.cost AS cost;


Random Walk

when to use:

Use the Random Walk algorithm as part of other algorithms or data pipelines when you need to generate a mostly random set of connected nodes.

Example use cases include:

• As part of the node2vec and graph2vec algorithms, that create node embeddings. These node embeddings could then be used as the input to a neural network.

• As part of the Walktrap and Infomap community detection. If a random walk returns a small set of nodes repeatedly, then it indicates that node set may have a community structure.

• As part of the training process of machine learning models. 


MATCH (source:Place {id: "London"})

CALL gds.alpha.randomWalk.stream({

start: id(source),

nodeProjection: "*",

relationshipProjection: {

all: {

type: "*",

properties: "distance",

orientation: "UNDIRECTED"

  }

},

steps: 5,

walks: 1

})

YIELD nodeIds

UNWIND gds.util.asNodes(nodeIds) as place

RETURN place.id AS place

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容