转一篇关于KL divergence与cross entropy的区别的回答

KL divergence is a natural way to measure the difference between two probability distributions. The entropy H(p) of a distribution p gives the minimum possible number of bits per message that would be needed (on average) to losslessly encode events drawn from p. Achieving this bound would require using an optimal code designed for p, which assigns shorter code words to higher probability events. D_{KL}(p \parallel q) can be interpreted as the expected number of extra bits per message needed to encode events drawn from true distribution p, if using an optimal code for distribution q rather than p. It has some nice properties for comparing distributions. For example, if p and q are equal, then the KL divergence is 0.

The cross entropy H(p,q) can be interpreted as the number of bits per message needed (on average) to encode events drawn from true distribution p, if using an optimal code for distribution q. Note the difference: D_{KL}(p \parallel q) measures the average number of extra bits per message, whereas H(p,q) measures the average number of total bits per message. It's true that, for fixed p, H(p,q) will grow as q becomes increasingly different from p. But, if p isn't held fixed, it's hard to interpret H(p,q) as an absolute measure of the difference, because it grows with the entropy of p.

KL divergence and cross entropy are related as:

D_{KL}(p \parallel q)=H(p,q)−H(p)

We can see from this expression that, when p and q are equal, the cross entropy is not zero; rather, it's equal to the entropy of p.

Cross entropy commonly shows up in loss functions in machine learning. In many of these situations, p is treated as the 'true' distribution, and q as the model that we're trying to optimize. For example, in classification problems, the commonly used cross entropy loss (aka log loss), measures the cross entropy between the empirical distribution of the labels (given the inputs) and the distribution predicted by the classifier. The empirical distribution for each data point simply assigns probability 1 to the class of that data point, and 0 to all other classes. Side note: The cross entropy in this case turns out to be proportional to the negative log likelihood, so minimizing it is equivalent maximizing the likelihood.

Note that p (the empirical distribution in this example) is fixed. So, it would be equivalent to say that we're minimizing the KL divergence between the empirical distribution and the predicted distribution. As we can see in the expression above, the two are related by the additive term H(p) (the entropy of the empirical distribution). Because p is fixed, H(p) doesn't change with the parameters of the model, and can be disregarded in the loss function. We might still want to talk about the KL divergence for theoretical/philosophical reasons but, in this case, they're equivalent from the perspective of solving the optimization problem. This may not be true for other uses of cross entropy and KL divergence, where p might vary.

t-SNE fits a distribution p in the input space. Each data point is mapped into the embedding space, where corresponding distribution q is fit. The algorithm attempts to adjust the embedding to minimize D_{KL}(p \parallel q). As above, p is held fixed. So, from the perspective of the optimization problem, minimizing the KL divergence and minimizing the cross entropy are equivalent. Indeed, van der Maaten and Hinton (2008) say in section 2: "A natural measure of the faithfulness with which q_{j|i} models p_{j|i} is the Kullback-Leibler divergence (which is in this case equal to the cross-entropy up to an additive constant)."

van der Maaten and Hinton (2008). Visualizing data using t-SNE.

原文见StackExchange questions #265966

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容