8种常见的核酸提取方法

核酸提取的基本步骤

1、裂解细胞,释放核酸。使用裂解液破坏样品细胞结构,从而使样品中的DNA游离在裂解体系中;

2、核酸的分离与纯化。需要将与核酸结合的蛋白质以及多糖、脂类等生物大分子和其他不需要的核酸分子去除;

3、核酸的浓缩、沉淀;

4、纯化核酸。纯化则是使DNA与裂解体系中的其它成分,如蛋白质、盐及其它杂质彻底分离的过程。

核酸提取纯化原则和要求

1、需要保证核酸一级结构的完整性,为下游实验做准备;

2、排除其它核酸分子的污染(提取DNA时排除RNA的干扰,反之亦然);

3、核酸样品中没有对酶有抑制作用的有机溶剂和高浓度的金属离子;

4、将核酸样品中其它生物大分子如蛋白质、多糖和脂类分子的污染降到最低程度。

核酸提取纯化的常见方法

(一)核酸提取按照提取方式可分为手工提取和通量较高的自动化提取。

(二)按照提取原理有如下方法:

煮沸裂解法

此法一般用于DNA的手工提取。染色体DNA比质粒DNA分子大很多,且染色体DNA为线状分子,而质粒DNA为共价闭合环装分子;当加热处理DNA溶液时,线状染色体DNA容易发生变性,共价闭合的质粒DNA在冷却时即恢复其天然构象;变性染色体DNA片段与变性蛋白质和细胞碎片结合形成沉淀,而复性的超螺旋质粒DNA分子则以溶解状态存在液相中,从而可通过离心将两者分开。

煮沸裂解法提取DNA,得量少,杂质多,DNA可能会出现断裂,主要适用于一些粗略的实验。

酚氯仿抽法

此法是DNA提取的经典方法,主要是使用两种不同的有机溶剂交替抽提将蛋白去除。用苯酚处理匀浆液时,由于蛋白与DNA的联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶,同时苯酚抑制了DNase的降解作用,蛋白质分子溶于酚相,而DNA溶于水相。离心分层后取出水层,多次重复操作,再合并含DNA 的水相,利用核酸不溶于醇的性质,用乙醇沉淀DNA。离心后,DNA可取出。

酚氯仿抽提最大的优势是成本低,对实验条件要求较低。提取的DNA保持天然状态。获得的DNA纯度高、片段大、效果好,缺点是操作较为繁琐。

浓盐法

高盐沉淀法是酚氯仿抽提方法的一个变种,利用RNP和DNP在电解溶液中溶解度不同,将二者分离。优点事省略了酚氯仿抽提操作的麻烦,并且几乎克服了酚氯仿抽提方法的一切缺点,只是得到DNA的纯度不够稳定。

阴离子去污剂法

用SDS或二甲苯酸钠等去污剂使蛋白质变性,可以直接从生物材料中提取DNA。由于细胞中DNA与蛋白质之间常借静电引力或配位键结合,同时阴离子去污剂能够破坏这种价键,所以常用阴离子去污剂提取DNA。

SDS法操作简单、温和,也可提取到较高分子量 DNA ,但所得产物含糖类杂质较多。

异硫氰酸胍/苯酚法(Trizol法)

Trizol法是提取RNA的经典方法,在匀质化或溶解样品中,Trizol试剂可保持RNA的完整性,同时又能破坏细胞及溶解细胞成分。加入氯仿离心后,裂解液分层成水相和有机相。RNA存在于水相中。水相转移后,RNA通过异丙醇沉淀回收。移去水相后,用乙醇可从中间相沉淀得到DNA,加入异丙醇沉淀可从有机相得到蛋白质。

Trizol法适用于普通的植物组织、动物组织以及真菌和细菌等的RNA提取实验。

CTAB法原理(植物DNA提取经典方法)

CTAB(hexadecyltrimethylammoniumbromide,十六烷基三甲基溴化铵),是一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸与酸性多聚糖的特性。在高离子强度的溶液中(>0.7mol/L NaCl),CTAB与蛋白质和多聚糖形成复合物,只是不能沉淀核酸。通过有机溶剂抽提,去除蛋白、多糖、酚类等杂质后加入乙醇沉淀即可使核酸分离出来。

离心柱纯化

通过特殊硅基质吸附材料,能够特定吸附DNA,而RNA和蛋白质顺利通过,然后利用高盐低PH结合核酸,低盐高PH值洗脱,来分离纯化核酸。离心柱纯化也是试剂盒提取中广泛的使用方法。

离心柱法DNA提取试剂盒价格较低,操作相对简单,在市面上应用较为广泛。但是其具有样本需求量大,损失多,对于珍稀样本无能为力,同时不便于高通量、自动化操作等劣势。

磁珠法提取

磁珠法利用了磁性颗粒活性基团在一定条件下可与核酸结合和解离的原理,先使用细胞裂解液裂解细胞,带有活性基团的磁性颗粒可特异性吸附从细胞中游离出来的核酸分子,而样品中的其他干扰物则很好的移除了,在磁场作用下,磁性颗粒与液体分开完成,最后回收颗粒(即磁珠-DNA 混合物),再用洗脱液洗脱即可得到纯净的DNA,获得质量较高的核酸模板。

磁珠法不需要离心、无需加入多种试剂,操作简单,符合核酸自动化提取要求。但是成本较高,科研端使用很难普及。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容