Pandas系列接下来的文章会为大家整理一下实际使用中比较高频的一些用法,当然还会有一篇关于时间序列处理的文章。在这里需要强调一点就是,不建议初学者上来就把Pandas中所有的方法都啃一遍,这样效率太低而且很多方法平时基本用不到,啃下来也容易忘。正确的方式是先把常用的方法先吃透,然后找个项目直接上手,遇到现有方法处理不了的再查看官方文档。
通过”人工智能“的方式,我从官方文档中筛选出一些比较常用的方法,有二十多个,初学者可以先试着把这些吃透了。为了避免过多看不下去,这篇文章就先介绍10个。
用于演示的数据如下:
In [15]: data
Out[15]:
company salary age
0 NaN 43 21
1 A 8 41
2 A 28 26
3 C 42 28
4 A 33 26
5 C 20 18
6 A 48 43
7 B 25 23
8 B 39 18
.head( )
作用对象:Series和DataFrame
主要用途:返回DataFrame的前N行。当数据量较大时,使用.head()可以快速对数据有个大致了解。
用法:
#默认返回前5行,N可以自行设定
In [16]: data.head()
Out[16]:
company salary age
0 NaN 43 21
1 A 8 41
2 A 28 26
3 C 42 28
4 A 33 26
.info( )
作用对象:Series和DataFrame
主要用途:打印所用数据的一些基本信息,包括索引和列的数据类型和占用的内存大小。
用法:
In [17]: data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8
Data columns (total 3 columns):
company 8 non-null object
salary 9 non-null int32
age 9 non-null int32
dtypes: int32(2), object(1)
memory usage: 224.0+ bytes
.describe( )
作用对象:Series和DataFrame
主要用途:生成描述性统计汇总,包括数据的计数和百分位数,有助于了解大致的数据分布
用法:
# 默认生成数值列的描述性统计
# 使用 include = 'all'生成所有列
In [18]: data.describe()
Out[18]:
salary age
count 9.000000 9.000000
mean 31.777778 27.111111
std 12.804079 9.143911
min 8.000000 18.000000
25% 25.000000 21.000000
50% 33.000000 26.000000
75% 42.000000 28.000000
max 48.000000 43.000000
.value_counts( )
作用对象:Series
主要用途:统计分类变量中每个类的数量,比如company中各个公司都有多少人
主要参数:
normalize (boolean, default False)
返回各类的占比
sort (boolean, default True)
是否对统计结果进行排序
ascending (boolean, default False)
是否升序排列
用法:
In [19]: data['company'].value_counts()
Out[19]:
A 4
B 2
C 2
Name: company, dtype: int64
# 返回占比情况
In [20]: data['company'].value_counts(normalize=True)
Out[20]:
A 0.50
B 0.25
C 0.25
Name: company, dtype: float64
# 升序排列
In [21]: data['company'].value_counts(ascending=True)
Out[21]:
C 2
B 2
A 4
Name: company, dtype: int64
.isna( )
作用对象:Series和DataFrame
主要用途:判断数据是否为缺失值,是的话返回True,否的话返回False
用法:
In [22]: data.isna()
Out[22]:
company salary age
0 True False False
1 False False False
2 False False False
3 False False False
4 False False False
5 False False False
6 False False False
7 False False False
8 False False False
.any( )
作用对象:Series和DataFrame
主要用途:大多数情况下数据量较大,不可能直接isna()后一个一个看是否是缺失值。any()和isna()结合使用可以判断某一列是否有缺失值。
用法:
In [23]: data.isna().any()
Out[23]:
company True
salary False
age False
dtype: bool
.dropna( )
作用对象:Series和DataFrame
主要用途:删掉含有缺失值的数据
用法:
In [24]: data.dropna()
Out[24]:
company salary age
1 A 8 41
2 A 28 26
3 C 42 28
4 A 33 26
5 C 20 18
6 A 48 43
7 B 25 23
8 B 39 18
.fillna( )
作用对象:Series和DataFrame
主要用途:填充缺失数据
主要参数:
value (scalar, dict, Series, or DataFrame)
用于填充缺失值的值
method ({‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None)
缺失值的填充方式,常用的是bfill后面的值进行填充,ffill用前面的值进行填充
inplace (boolean, default False)
是否作用于原对象
用法:
In [26]: data.fillna('B')
Out[26]:
company salary age
0 B 43 21
1 A 8 41
2 A 28 26
3 C 42 28
4 A 33 26
5 C 20 18
6 A 48 43
7 B 25 23
8 B 39 18
# 用缺失值后面的值来填充(这里NaN后面是'A')
In [25]: data.fillna(method='bfill')
Out[25]:
company salary age
0 A 43 21
1 A 8 41
2 A 28 26
3 C 42 28
4 A 33 26
5 C 20 18
6 A 48 43
7 B 25 23
8 B 39 18
.sort_index( )
作用对象:Series和DataFrame
主要用途:对数据按照索引进行排序
主要参数:
ascending (boolean, default False)
是否升序排列
inplace (boolean, default False)
是否作用于原对象
用法:
# 按索引降序排列
In [27]: data.sort_index(ascending=False)
Out[27]:
company salary age
8 B 39 18
7 B 25 23
6 A 48 43
5 C 20 18
4 A 33 26
3 C 42 28
2 A 28 26
1 A 8 41
0 NaN 43 21
.sort_values( )
作用对象:Series和DataFrame
主要用途:对DataFrame而言,按照某列进行排序(用by参数控制),对Series按数据列进行排序。
主要参数:
by (str or list of str)
作用于DataFrame时需要指定排序的列
ascending (boolean, default False)
是否升序排列
In [28]: data.sort_values(by='salary')
Out[28]:
company salary age
1 A 8 41
5 C 20 18
7 B 25 23
2 A 28 26
4 A 33 26
8 B 39 18
3 C 42 28
0 NaN 43 21
6 A 48 43
.astype()
作用对象:Series和DataFrame
主要用途:修改字段的数据类型,数据量大的情况下可用于减小数据占用的内存,多用于Series。
用法:
# 把age字段转为int类型
In [12]: data["age"] = data["age"].astype(int)
In [13]: data
Out[13]:
company gender salary age
0 B female 30 40
1 A female 36 31
2 B female 35 28
3 B female 9 18
4 B female 16 43
5 A male 46 22
6 B female 15 28
7 B female 33 40
8 C male 19 32
.rename()
作用对象:Series,DataFrame(大多数情况下)
主要用途:多用于修改DataFrame的列名
主要参数:
columns (dict-like or function)
指定要修改的列名以及新的列名,一般以字典形式传入
inplace (boolean, default False)
是否作用于原对象
用法:
# 将'age'更改为员工编号'number',并作用于原对象
In [15]: data.rename(columns={'age':'number'},inplace=True)
In [16]: data
Out[16]:
company gender salary number
0 B female 30 40
1 A female 36 31
2 B female 35 28
3 B female 9 18
4 B female 16 43
5 A male 46 22
6 B female 15 28
7 B female 33 40
8 C male 19 32
.set_index()
作用对象:DataFrame
主要用途:将DataFrame中的某一(多)个字段设置为索引
用法:
In [19]: data.set_index('number',inplace=True)
In [20]: data
Out[20]:
company gender salary
number
40 B female 30
31 A female 36
28 B female 35
18 B female 9
43 B female 16
22 A male 46
28 B female 15
40 B female 33
32 C male 19
.reset_index()
作用对象:Series,DataFrame
主要用途:重置索引,默认重置后的索引为0~len(df)-1
主要参数:
drop (boolean, default False)
是否丢弃原索引,具体看下方演示
inplace (boolean, default False)
是否作用于原对象
用法:
# drop = True,重置索引,并把原有的索引丢弃
In [22]: data.reset_index(drop=True)
Out[22]:
company gender salary
0 B female 30
1 A female 36
2 B female 35
3 B female 9
4 B female 16
5 A male 46
6 B female 15
7 B female 33
8 C male 19
# drop = False,重置索引
# 原索引列'number'作为新字段进入DataFrame
In [23]: data.reset_index(drop=False,inplace=True)
In [24]: data
Out[24]:
number company gender salary
0 40 B female 30
1 31 A female 36
2 28 B female 35
3 18 B female 9
4 43 B female 16
5 22 A male 46
6 28 B female 15
7 40 B female 33
8 32 C male 19
.drop_duplicates()
作用对象:Series,DataFrame
主要用途:去掉重复值,作用和SQL中的distinct类似
用法:
In [26]: data['company'].drop_duplicates()
Out[26]:
0 B
1 A
8 C
Name: company, dtype: object
.drop()
作用对象:Series,DataFrame
主要用途:常用于删掉DataFrame中的某些字段
主要参数:
columns (single label or list-like)
指定要删掉的字段
用法:
# 删掉'gender'列
In [27]: data.drop(columns = ['gender'])
Out[27]:
number company salary
0 40 B 30
1 31 A 36
2 28 B 35
3 18 B 9
4 43 B 16
5 22 A 46
6 28 B 15
7 40 B 33
8 32 C 19
.isin()
作用对象:Series,DataFrame
主要用途:常用于构建布尔索引,对DataFrame的数据进行条件筛选
用法:
# 筛选出A公司和C公司的员工记录
In [29]: data.loc[data['company'].isin(['A','C'])]
Out[29]:
number company gender salary
1 31 A female 36
5 22 A male 46
8 32 C male 19
pd.cut()
主要用途:将连续变量离散化,比如将人的年龄划分为各个区间
主要参数:
x (array-like)
需要进行离散化的一维数据
bins (int, sequence of scalars, or IntervalIndex)
设置需要分成的区间,可以指定区间数量,也可以指定间断点
labels (array or bool, optional)
设置区间的标签
用法:
# 把薪水分成5个区间
In [33]: pd.cut(data.salary,bins = 5)
Out[33]:
0 (23.8, 31.2]
1 (31.2, 38.6]
2 (31.2, 38.6]
3 (8.963, 16.4]
4 (8.963, 16.4]
5 (38.6, 46.0]
6 (8.963, 16.4]
7 (31.2, 38.6]
8 (16.4, 23.8]
Name: salary, dtype: category
Categories (5, interval[float64]): [(8.963, 16.4] < (16.4, 23.8] < (23.8, 31.2] < (31.2, 38.6] <(38.6, 46.0]]
# 自行指定间断点
In [32]: pd.cut(data.salary,bins = [0,10,20,30,40,50])
Out[32]:
0 (20, 30]
1 (30, 40]
2 (30, 40]
3 (0, 10]
4 (10, 20]
5 (40, 50]
6 (10, 20]
7 (30, 40]
8 (10, 20]
Name: salary, dtype: category
Categories (5, interval[int64]): [(0, 10] < (10, 20] < (20, 30] < (30, 40] < (40, 50]]
# 指定区间的标签
In [34]: pd.cut(data.salary,bins = [0,10,20,30,40,50],labels = ['低','中下','中','中上','高'])
Out[34]:
0 中
1 中上
2 中上
3 低
4 中下
5 高
6 中下
7 中上
8 中下
Name: salary, dtype: category
Categories (5, object): [低 < 中下 < 中 < 中上 < 高]
pd.qcut()
主要用途:将连续变量离散化,区别于pd.cut()用具体数值划分,pd.qcut()使用分位数进行区间划分
主要参数:
x (array-like)
需要进行离散化的一维数据
q(integer or array of quantiles)
设置需要分成的区间,可以指定区间格式,也可以指定间断点
labels (array or boolean, default None)
设置区间的标签
用法:
# 按照0-33.33%,33.33%-66.67%,66.67%-100%百分位进行划分
In [35]: pd.qcut(data.salary,q = 3)
Out[35]:
0 (18.0, 33.667]
1 (33.667, 46.0]
2 (33.667, 46.0]
3 (8.999, 18.0]
4 (8.999, 18.0]
5 (33.667, 46.0]
6 (8.999, 18.0]
7 (18.0, 33.667]
8 (18.0, 33.667]
Name: salary, dtype: category
Categories (3, interval[float64]): [(8.999, 18.0] < (18.0, 33.667] < (33.667, 46.0]]
.where()
作用对象:Series,DataFrame
主要用途:将不符合条件的值替换掉成指定值,相当于执行了一个if-else
主要参数:
cond (boolean Series/DataFrame, array-like, or callable)
用于筛选的条件
other(scalar, Series/DataFrame, or callable)
对不符合cond条件的值(结果为为False),用other的值进行替代
用法:
# 语句解析
# 若salary<=40,则保持原来的值不变
# 若salary大于40,则设置为40
In [38]: data['salary'].where(data.salary<=40,40)
Out[38]:
0 30
1 36
2 35
3 9
4 16
5 40
6 15
7 33
8 19
Name: salary, dtype: int32
pd.concat()
主要用途:将多个Series或DataFrame拼起来(横拼或者竖拼都可以)
主要参数:
objs (a sequence or mapping of Series or DataFrame objects)
用于拼接的Series或DataFrame,一般都放在一个列表中传入
axis (0/’index’, 1/’columns’)
控制数据是横向拼接还是纵向拼接,默认为纵向拼接。
ignore_index (bool, default False)
是否保留原Seires或DataFrame内部的索引,如果为True则对拼接而成的数据生成新索引(0~n-1)
用法:
# 分别取data的前三条和后三条为data1和data2
In [41]: data1 = data.head(3)
In [42]: data1
Out[42]:
number company gender salary
0 40 B female 30
1 31 A female 36
2 28 B female 35
In [43]: data2 = data.tail(3)
In [44]: data2
Out[44]:
number company gender salary
6 28 B female 15
7 40 B female 33
8 32 C male 19
# 拼接数据
In [45]: pd.concat([data1,data2],ignore_index = False)
Out[45]:
number company gender salary
0 40 B female 30
1 31 A female 36
2 28 B female 35
6 28 B female 15
7 40 B female 33
8 32 C male 19
# 拼接数据并重置索引
In [46]: pd.concat([data1,data2],ignore_index=True)
Out[46]:
number company gender salary
0 40 B female 30
1 31 A female 36
2 28 B female 35
3 28 B female 15
4 40 B female 33
5 32 C male 19
.pivot_table()
作用对象:DataFrame
主要用途:对DataFrame进行数据透视,相当于Excel中的数据透视表
主要参数:
values (column to aggregate, optional)
用于聚合运算的字段(数据透视的目标变量)
index (column, Grouper, array, or list of the previous)
类比于数据透视表中的行标签
columns (column, Grouper, array, or list of the previous)
类比于数据透视表中的列标签
aggfunc ( function, list of functions, dict, default numpy.mean)
对values进行什么聚合运算
用法:
# 从公司和性别两个维度对薪水进行数据透视
# 看看这两个维度下的平均薪资水平
In [47]: data.pivot_table(values = 'salary',index = 'company',
columns = 'gender',aggfunc=np.mean)
Out[47]:
gender female male
company
A 36.0 46.0
B 23.0 NaN
C NaN 19.0
Pandas中常用的函数便整理到这里,至于map和apply这类的就不在此过多介绍了,详细的介绍可以看之前写过的文章。希望整理的这些函数能对大家有所帮助!