0525

基础知识

numts: 线粒体假基因(Nuclear Mitochondrial Pseudogenes)

[Nuclear mitochondrial pseudogenes] - PubMed (nih.gov)

NUMT-pseudogenes can make serious errors in analyzing free mtDNA of total cellular DNA (using PCR), as a result of their co-amplification.
是一些线粒体基因片段游离整合到核基因上成为非编码区,影响mtDNA的PCR过程的结果(共扩增)。

群体分层分析方法学习(转)

structure

1.数据格式处理

2. 参数选择

将整理好的基因型数据导入Structure,设置参数“Number of MCMC Reps”, “burn-in period”, “length of burn-in period”。

由于该软件所采用的算法是一个随机过程,因此,对于每一个K,需要进行多次重复运算以保证结果的可靠性。

3. 判断最佳K值

将结果打包,提交给在线软件Structure harvester,分析最佳的K值。

4. CLUMPP

使用CLUMPP对structure分析的重复运算结果进行重复抽样分析。得到最佳K值的Q-matrix结果。

5. 作图

将CLUMPP的结果传递给distruct,进行structure图形的绘制。

作者:WooWoods

链接:https://www.jianshu.com/p/3b621b2d6c5f

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Structure图构建原理

获取样本基因型;即snp calling的结果,vcf file。

一般来说我们是不知道群体中十几包含了多少个亚群,我们一般把它设置为K。然后Structure软件就会使用贝叶斯算法,推算并模拟K分别在1~x的情况下,是如何分群,及每个个体血统分布情况。

如下图你可以了解k=2,3,9的情况下,该物种是如何分群的,及每个个体的血统构成。例如K=3,有三种颜色,代表三个亚群。有一些个体,会掺杂两种颜色,证明这个个体具有杂合的血统,并且颜色的多少代表掺杂了对应祖先的比例。

但是问题来了如何决定那个K值所对应的图是对的?因为structure使用的是贝叶斯算法,每个K值模拟的结果都会产生一个最大似然值。软件中会以最大似然值对数的形式出现,该值越大,说明对应K模拟的结果越接近真实群体的情况。当K值不断增加,会出现一个饱和的最大似然值的点。该点对应的K值所生成的图就是最合适的模拟图。般随着K值升高,ln likelihood值也会不断升高,但会慢慢进入平台期。选择最优K值的目标是要找到那个拐点。

简单说来,就是要找的一个likelihood最大(越大越可靠)而且K值最小(亚群数最少)的模拟结果,往往这样的模拟对应的K值是最接近于群体的真实情况的。

作者:lakeseafly

链接:https://www.jianshu.com/p/d46f27665074

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容