5.7动量微分方程求积分得到积分方程

5.7动量微分方程求积分得到积分方程

标签(空格分隔): 传热学


目标:将流体外掠平板u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=\nu{\frac{\partial ^2 u}{\partial y^2}}沿着0到\delta积分直接得到边界层的动量积分方程

\rho\frac{d}{dx}\int_0^\delta u(u_\infty-u)dy=\eta(\frac{\partial u}{\partial y})_w

1.将动量微分方程沿着0\sim\infty对y积分

\int_0^\infty u\frac{\partial u}{\partial x}dy+\int_0^\infty v\frac{\partial u}{\partial y}dy=\int_0^\infty \nu{\frac{\partial ^2 u}{\partial y^2}}dy\tag{1}

2.加入边界层模型的条件

y>\delta(\delta\sim\infty);u=u_\infty,v=v_\delta\\
速度梯度不在发生变化,所有一阶变化量二阶变化量归零
\frac{\partial u}{\partial x}=0;\frac{\partial u}{\partial y}=0;\frac{\partial ^2 u}{\partial y^2}=0;

3.0\sim\infty的积分转换为边界层内积分

\int_0^\delta u\frac{\partial u}{\partial x}dy+\int_0^\delta v\frac{\partial u}{\partial y}dy=\int_0^\delta \nu{\frac{\partial ^2 u}{\partial y^2}}dy\tag{2}

4.对(2)式右边直接积分

\int_0^\delta \nu{\frac{\partial ^2 u}{\partial y^2}}dy=\nu \frac{\partial u}{\partial y}|_0^\delta\\ \because y=\delta;\frac{\partial u}{\partial y}=0\\
\therefore \int_0^\delta \nu{\frac{\partial ^2 u}{\partial y^2}}dy=-\nu(\frac{\partial u}{\partial y})|_{(y=0)}\tag{4}

5.(2)式转换为

\int_0^\delta u\frac{\partial u}{\partial x}dy+\int_0^\delta v\frac{\partial u}{\partial y}dy=-\nu(\frac{\partial u}{\partial y})|_{(y=0)}\tag{5}

6.根据连续性方程\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}

将连续性方程沿着y方向0\sim\delta积分得到一个条件

\int_0^\delta\frac{\partial u}{\partial x}dy=-\int_0^\delta\frac{\partial v}{\partial y}dy

注意到上面的积分式中右边是对v对y的偏导并对y积分,可以直接积出来

-\int_0^\delta\frac{\partial u}{\partial x}dy=v|_0^\delta=v_\delta\tag{6} (壁面处速度v为0)

7.这么做的目的是为了将(5)中对y的偏导数,这部分好处理,可以先简化出来

\int_0^\delta v\frac{\partial u}{\partial y}dy\\ 换元, \frac{\partial u}{\partial y}是对y的偏导,dy中可以直接放入
\int_0^\delta v\frac{\partial u}{\partial y}dy=\int_0^\delta vdu\tag{7}

8.(7)式形式很简明了,做分步积分处理

\int_0^\delta vdu=uv|_0^\delta-\int_0^\delta u\cdot dv\\
=uv|_0^\delta-\int_0^\delta u\cdot\frac{\partial v}{\partial y}dy=u_\infty v_\delta-\int_0^\delta u\frac{\partial v}{\partial y}dy\tag{8}

9.将v_\delta的表达式(6)带入(8)

在量纲分析的曲线趋势里讨论过,主流速度u_\infty 不变,v_\delta为主流速度的0.18\%

\int_0^\delta v\frac{\partial u}{\partial y}dy=u_\infty\cdot (-\int_0^\delta\frac{\partial u}{\partial x}dy)-\int_0^\delta u\frac{\partial v}{\partial y}dy\tag{9}

10.再次利用连续性方程中的结论\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}带入(9)

\int_0^\delta v\frac{\partial u}{\partial y}dy=-u_\infty\int_0^\delta\frac{\partial u}{\partial x}dy+\int_0^\delta u\frac{\partial u}{\partial x}dy\tag{10}

现在(10)中式子逐渐出现了雏形(u_\infty与u的关系)

(11)式带回(5)式的第二项

\int_0^\delta u\frac{\partial u}{\partial x}dy+[-u_\infty\int_0^\delta\frac{\partial u}{\partial x}dy+\int_0^\delta u\frac{\partial u}{\partial x}dy]

11.合并同类项

\int_0^\delta(2u-u_\infty)\frac{\partial u}{\partial x}dy=-\nu(\frac{\partial u}{\partial y})|_{(y=0)}\tag{11}

12.偏微分变形

(2u-u_\infty)\frac{\partial u}{\partial x}=\frac{d}{dx}(u^2-u\cdot u_\infty)\tag{12}

13.(12)带入(11),并注意到对x的微分与y无关,拿出去

\int_0^\delta\frac{d}{dx}(u^2-u\cdot u_\infty)dy=\frac{d}{dx}\int_0^\delta (u^2-u\cdot u_\infty)dy=-\nu(\frac{\partial u}{\partial y})_{(y=0)}\tag{13}

14.动力粘度与运动粘度的关系,改变一下正负号,得到书上的结果

\rho\frac{d}{dx}\int_0^\delta u(u_\infty-u)dy=\eta(\frac{\partial u}{\partial y})_{y=0}

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容