多重检验矫正p值

因为P值的阈值是人为规定的,无论是多小的P值,也仅仅能代表结果的低假阳性,而非保证结果为真。如果检验一次,犯错的概率是5%;检测10000次,犯错的次数就是500次,即额外多出了500次差异的结论(即使实际没有差异)。即使P值已经很小(比如0.05),也会被检验的总次数无限放大。比如检验10000次,得到假阳性结果的次数就会达到 5%*10000=500次。

这时候我们就需要引入多重检验来进行校正,从而减低假阳性结果在我们的检验中出现的次数。

R语言

> p.adjust(p, method = p.adjust.methods, n = length(p))
> p.adjust
function (p, method = p.adjust.methods, n = length(p)){
    method <- match.arg(method)
    if (method == "fdr") 
    method <- "BH"
    nm <- names(p)
    p <- as.numeric(p)
    ……
    BH = {
        i <- lp:1L
        o <- order(p, decreasing = TRUE)
        ro <- order(o)
        pmin(1, cummin(n/i * p[o]))[ro]
    }
    ……
        p0
}
  • 我们将一系列p值、校正方法(BH)以及所有p值的个数(length(p))输入到p.adjust函数中。
  • 将一系列的p值按照从大到小排序,然后利用下述公式计算每个p值所对应的FDR值。
    公式:p * (n/i), p是这一次检验的p value,n是检验的次数,i是排序后的位置ID(如最大的P值的i值肯定为1,第二大则是2,依次至最小为n)。
  • 将计算出来的FDR值赋予给排序后的p值,如果某一个p值所对应的FDR值大于前一位p值(排序的前一位)所对应的FDR值,则放弃公式计算出来的FDR值,选用与它前一位相同的值。因此会产生连续相同FDR值的现象;反之则保留计算的FDR值。
  • 将FDR值按照最初始的p值的顺序进行重新排序,返回结果。

python

Signature:
multi.multipletests(
    pvals,
    alpha=0.05,
    method='hs',
    is_sorted=False,
    returnsorted=False,
)
Docstring:
Test results and p-value correction for multiple tests

Parameters
----------
pvals : array_like, 1-d
    uncorrected p-values.   Must be 1-dimensional.
alpha : float
    FWER, family-wise error rate, e.g. 0.1
method : str
    Method used for testing and adjustment of pvalues. Can be either the
    full name or initial letters. Available methods are:

    - `bonferroni` : one-step correction
    - `sidak` : one-step correction
    - `holm-sidak` : step down method using Sidak adjustments
    - `holm` : step-down method using Bonferroni adjustments
    - `simes-hochberg` : step-up method  (independent)
    - `hommel` : closed method based on Simes tests (non-negative)
    - `fdr_bh` : Benjamini/Hochberg  (non-negative)
    - `fdr_by` : Benjamini/Yekutieli (negative)
    - `fdr_tsbh` : two stage fdr correction (non-negative)
    - `fdr_tsbky` : two stage fdr correction (non-negative)

is_sorted : bool
    If False (default), the p_values will be sorted, but the corrected
    pvalues are in the original order. If True, then it assumed that the
    pvalues are already sorted in ascending order.
returnsorted : bool
     not tested, return sorted p-values instead of original sequence

Returns
-------
reject : ndarray, boolean
    true for hypothesis that can be rejected for given alpha
pvals_corrected : ndarray
    p-values corrected for multiple tests
alphacSidak : float
    corrected alpha for Sidak method
alphacBonf : float
    corrected alpha for Bonferroni method
### 如果里面pvalue_array里面有NA值,需要先删掉,但是R语言的好像是内置有处理步骤可以自动删掉NA
import statsmodels.stats.multitest as multi
import numpy as np
multi.multipletests(pvalue_array, alpha=0.05, method="fdr_bh", is_sorted=False)

浅谈多重检验校正FDR | Public Library of Bioinformatics (plob.org)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容