《DNK210使用指南 -CanMV版 V1.0》第四十七章 MNIST实验

第四十七章 MNIST实验

在上一章节中,介绍了利用maix.KPU模块实现了车牌的检测和识别,本章将继续介绍利用maix.KPU模块实现的MNIST识别。通过本章的学习,读者将学习到MNIST识别应用在CanMV上的实现。

本章分为如下几个小节:

47.1 maix.KPU模块介绍

47.2 硬件设计

47.3 程序设计

47.4 运行验证

47.1 maix.KPU模块介绍

有关maix.KPU模块的介绍,请见第39.1小节《maix.KPU模块介绍》。

47.2 硬件设计

47.2.1 例程功能

1. 获取摄像头输出的图像,对图像进行预处理后,送入KPU进行MNIST手写数字识别,然后在LCD上显示识别出的数字和其对应的得分。

47.2.2 硬件资源

本章实验内容,主要讲解maix.KPU模块的使用,无需关注硬件资源。

47.2.3 原理图

本章实验内容,主要讲解maix.KPU模块的使用,无需关注原理图。

47.3 程序设计

47.3.1 maix.KPU模块介绍

有关maix.KPU模块的介绍,请见第47.1小节《maix.KPU模块介绍》。

47.3.2 程序流程图

图47.3.2.1 人脸识别实验流程图

47.3.3 main.py代码

main.py中的脚本代码如下所示:

import lcd

import sensor

import gc

from maix import KPU

lcd.init()

sensor.reset()

sensor.set_framesize(sensor.QVGA)

sensor.set_pixformat(sensor.RGB565)

sensor.set_hmirror(False)

# 构造并初始化MNIST识别KPU对象

mnist_recognizer = KPU()

mnist_recognizer.load_kmodel("/sd/KPU/uint8_mnist_cnn_model.kmodel")

while True:

    # 获取摄像头输出图像

    img= sensor.snapshot()

    roi= ((img.width() - img.height()) // 2, 0, img.height(), img.height())

    img.draw_rectangle(roi, color=(0, 255, 0))

    # 对图像进行预处理

   gray_img = img.copy(roi)

   gray_img.to_grayscale()

   gray_img.resize(112, 112)

   gray_img.invert()

   gray_img.strech_char(1)

   gray_img.pix_to_ai()

    # 将图像送入卷积神经网络进行识别,并获取识别结果

   output = mnist_recognizer.run_with_output(gray_img, getlist=True)

   number = output.index(max(output))

   score = KPU.sigmoid(max(output))

    img.draw_string(2, 2, str(number), color=(255, 0, 0), scale=1.5)

    img.draw_string(2, 16 + 2, str(score), color=(255, 0, 0), scale=1.5)

    del gray_img

    lcd.display(img)

    gc.collect()

可以看到一开始是先初始化了LCD和摄像头,并分别构造并初始化了用于MNIST手写数字识别的KPU对象。

然后便是在一个循环中不断地获取摄像头输出的图像,在对图像进行预处理后,将图像送入卷积神经网络中进行计算和识别,最后将识别出的结果在图像上进行绘制,然后在LCD上显示图像。

47.4 运行验证

将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,将摄像头对手写数字,让其采集到手写数字图像,接着便可以看到LCD上显示了MNIST手写数字识别的结果,显示了识别出的数字结果及其对应的得分,如下图所示:

图47.4.1 LCD显示MNIST识别实验结果
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容