前言 1. 介绍1.1 AES是什么?1.2 AES详解1.3 实现原理和比较1.4 模式和填充选择 2. 经验总结2.1 加密模式和填充方式的确定2.2 填充方式的选择2...
TensorFlow从0到1系列回顾 前面的14 交叉熵损失函数——防止学习缓慢和15 重新思考神经网络初始化从学习缓慢问题入手,尝试改进神经网络的学习。本篇讨论过拟合问题,...
《TensorFlow从0到1》就要结束了。 3条主线 这个部分共包含18篇文章,4万余字(简书的严格统计不到4万)。总的来说,它无外乎两方面内容:人工神经网络,及其Tens...
TensorFlow从0到1系列回顾 到目前为止,我们已经研究了梯度下降算法、人工神经网络以及反向传播算法,他们各自肩负重任: 梯度下降算法:机器自学习的算法框架; 人工神经...
TensorFlow从0到1系列回顾 上一篇 9 “驱魔”之反向传播大法引出了反向传播算法——神经网络的引擎,并在最后窥探了它的全貌。本篇将详细的讨论反向传播各方面的细节。尽...
TensorFlow从0到1系列回顾 上一篇 6 解锁梯度下降算法解释清楚了学习率(learning rate)。本篇基于对梯度下降算法和学习率的理解,去填下之前在线性回归中...