双曲线:2014年全国卷A题4

双曲线:2014年全国卷A题4

已知 F 为双曲线 C:x^2-my^2=3m(m \gt 0) 的一个焦点,则点 FC 的一条渐近线的距离为

(A)\sqrt{3} \qquad (B)\sqrt{3}m \qquad (C)3 \qquad (D)3m


【解析】

双曲线方程可整理为标准形:\dfrac{x^2}{3m}-\dfrac{y^2}{3}=1

a^2=3m,b^2=3,c^2=3(m+1)

记渐近线的倾角为 \alpha, 斜率为 k, 则 k^2=\dfrac{b^2}{a^2}=\dfrac{1}{m}

\dfrac{1}{\sin^2 \alpha}=\dfrac{1}{k^2} +1 = m+1

c^2 \cdot \sin^2 \alpha = 3

所以,点 FC 的一条渐近线的距离为 \sqrt{3}

选项A正确。


【提炼与提高】

本题解答过程涉及以下知识:

1)双曲线的标准方程、焦点坐标、渐近线的斜率。

2)直线倾角与斜率的关系。

3)三角公式:\dfrac{1}{\tan^2\alpha}+1=\dfrac{1}{\sin^2\alpha}


【易错点】

小心计算,避免低级错误。


©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容