2018-10-11

使用GEOquery包

if(T){
source("http://bioconductor.org/biocLite.R")
options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/")
biocLite("GEOquery")

library(GEOquery)
eSet <- getGEO('GSE62832', destdir = '.', getGPL = F, AnnotGPL = F)#一般芯片的注释文件比较大,直接下载不容易成功,后两个选项可以避免下载GPL、Annotation
save(eSet, file = 'GSE62832.eSet.Rdata')
}
下载完,看一下eSet这个对象都包含什么

> eSet$GSE62832_series_matrix.txt.gzExpressionSet (storageMode: lockedEnvironment)assayData: 33297 features, 36 samples   element names: exprs protocolData: nonephenoData  sampleNames: GSM1534034 GSM1534035 ... GSM1534069 (36 total) #36个样本  varLabels: title geo_accession ... tissue:ch1 (35 total)  varMetadata: labelDescriptionfeatureData: noneexperimentData: use 'experimentData(object)'Annotation: GPL6244 #查看对应芯片平台
class(eSet) #先查看数据种类【列表还是数据框】str(eSet) #再看数据结构【可以看到第二行涉及到了表达矩阵】#既然是列表,那么从列表中提取信息就是 eSet[[1]]e <- exprs(eSet[[1]])

2. 将表达矩阵的探针ID转换为gene ID

  • 首先需要知道GSE62832对应平台是GPL6244

  • 然后需要知道GPL6244对应哪个注释包【阅读jimmy之前整理的平台信息https://www.jianshu.com/p/f6906ba703a0

  • 下载相应的注释包

  source("https://bioconductor.org/biocLite.R")  options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/")  biocLite("hugene10sttranscriptcluster.db")
  • 开始探索、过滤、整合
  library(hugene10sttranscriptcluster.db)   ls("package:hugene10sttranscriptcluster.db") #查看所有包含的对象  s <- toTable(hugene10sttranscriptclusterSYMBOL) #将SYMBOL对象转为数据框  #【补充:这个注释包是别人上传的,我们只是拿来用。其中的表达矩阵中原来有3w多探针,作者过滤后只留下接近2w的探针。这仅仅是作者过滤后的结果,并非原始数据结果】

简单的探索

  s$symbol %>% unique() %>% length() #看一下有多少基因【人类正常蛋白编码基因就2w左右】  s$symbol %>% table() %>% sort() %>% tail() #基因使用探针最多的前6名【发现有两个基因用了10个探针】  s$symbol %>% table() %>% sort() %>% table()

过滤+整合

  dim(e) #过滤前  #过滤【只保留和注释文件探针id相同的探针】  efilt <- e[rownames(e)%in%s$probe_id,]  dim(efilt)#过滤后  #整合1【目的:保证一个基因对应一个探针;如果基因和探针一一对应很好说,但如果一个基因对应多个探针:每个探针取一行的均值-》对应同一基因的探针取表达量最大的探针-》按照基因名给他们建索引,因为是按照基因来过滤探针(不用s$probe_id构建索引的原因是,看清楚我们的目的是让注释包的一个基因对应我们自己表达矩阵的一个探针。如果用s$probe_id那么结果就成了让注释包的一个探针对应我们自己表达矩阵的一个探针,当然这样也运行不成功,因为自己表达矩阵的探针过滤后的数量和注释包的探针数量不相等,这样没法一一对应。但基因名数量是不变的,什么是索引?以不变应万变的就是索引)】  maxp = by(efilt,s$symbol,function(x) rownames(x)[which.max(rowMeans(x))])   uniprobes = as.character(maxp)  efilt=efilt[rownames(efilt)%in%uniprobes,]  #整合2【目的:将我们表达矩阵的行名换成刚才一对一的基因名,并且match这个函数保证了表达矩阵和注释包的顺序是一致的】  rownames(efilt)=s[match(rownames(efilt),s$probe_id),2]

3. 对表达矩阵进行一些检验

表达矩阵不局限于GEO数据库的芯片分析,转录组及其他涉及基因、样本、分组关系的都会有一个表达量矩阵,就是一个基因在不同样本中(对照、处理;是否患病等)的表达差异。
拿到表达矩阵,在进行后续分析之前,首先要检测这个矩阵是不是合理的,比如看管家基因是否表达量突出、一致;样本分组是不是和实验设计一致,用PCA、hclust检验

3.1 检测一些管家基因表达量
boxplot(efilt[,1])#看看第一个样本中总体基因表达量分布,可以看到基本为5左右efilt['ACTB',] #激动蛋白Beta-actin的基因名是ACTB,管家基因efilt['GAPDH',] #也是管家基因
3.2 看表达矩阵的整体分布

先把表达矩阵=》tidy data【四列:基因名、样本、表达量、表型分组(看文献按MAO、MNO分组)】

library(reshape2)pdata=pData(eSet[[1]]) #将样本表型信息从数据框中提取出来【取出来的是表型、样本的数据框】group_list=as.character(pdata$`metabolic status:ch1`) m_efilt = melt(efilt) #先将原来矩阵“融化colnames(m_efilt)=c('symbol','sample','value') #重新命名三列m_efilt$group=rep(group_list,each=nrow(efilt)) 

以图为证

<figure style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important; color: inherit; font-family: -apple-system-font, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif; font-size: inherit; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: inherit; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);">
image

<figcaption style="margin: 10px 0px 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important; line-height: inherit; text-align: center; color: rgb(153, 153, 153); font-size: 0.7em;">检查数据</figcaption>

</figure>

4. 对表达矩阵进行差异分析

只需要提供表达矩阵efilt、分组信息group_list,就能使用limma进行分析
详细内容参考jimmy的http://www.bio-info-trainee.com/bioconductor_China/software/limma.html

suppressMessages(library(limma))#limma需要三个矩阵:表达矩阵(efilt)、分组矩阵(design)、比较矩阵(contrast)#先做一个分组矩阵~design,说明MAO是哪几个样本,MNO又是哪几个,其中1代表“是”design <- model.matrix(~0+factor(group_list))colnames(design) <- levels(factor(group_list))rownames(design) <- colnames(efilt)design#再做一个比较矩阵【一般是case比control】contrast<-makeContrasts(paste0(unique(group_list),collapse = "-"),levels = design)contrast
4.1 准备就绪,就可以开始差异分析
DEG <- function(efilt,design,contrast){  ##step1  fit <- lmFit(efilt,design)  ##step2  fit2 <- contrasts.fit(fit, contrast)   fit2 <- eBayes(fit2)    ##step3  mtx = topTable(fit2, coef=1, n=Inf)  deg_mtx = na.omit(mtx)   return(deg_mtx)}DEG_mtx <- DEG(efilt,design,contrast) #得到全部的差异基因矩阵
4.2 对一个小表达矩阵,如30、50个基因,可以用热图
top30_gene=head(rownames(DEG_mtx),30)top30_matrix=efilt[top30_gene,] #得到top30的表达量矩阵top30_matrix=t(scale(t(top30_matrix)))#这里做个top30 gene heatmap

<figure style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important; color: inherit; font-family: -apple-system-font, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif; font-size: inherit; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: inherit; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);">
image

<figcaption style="margin: 10px 0px 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important; line-height: inherit; text-align: center; color: rgb(153, 153, 153); font-size: 0.7em;">前30基因的热图</figcaption>

</figure>

4.3 对一个大的表达矩阵,如全部的差异基因,可以用火山图

火山图实际上就是根据两列进行作图:logFC、pvalue

plot(DEG_mtx$logFC, -log10(DEG_mtx$P.Value)) #先画一个最简单的图(能说明原理)#再根据jimmy的代码做一个。网络上也有很多火山图的代码可以参考

<figure style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important; color: inherit; font-family: -apple-system-font, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif; font-size: inherit; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: inherit; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);">
image

</figure>

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,763评论 6 539
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,238评论 3 428
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,823评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,604评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,339评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,713评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,712评论 3 445
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,893评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,448评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,201评论 3 357
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,397评论 1 372
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,944评论 5 363
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,631评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,033评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,321评论 1 293
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,128评论 3 398
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,347评论 2 377

推荐阅读更多精彩内容

  • App测试点: 1、 安装查看在安装过程中存在的提示信息是否明确,意思是否明确在安装过程中,点击取消按钮,能否...
    理智_b3b0阅读 1,342评论 2 5
  • 酒,茶 --天鹰(张庭瀚 说茶,免不了要与酒比较。酒醉人,茶不醉人。酒误事,茶不误事。...
    滇山云竹阅读 353评论 0 0
  • 作为一个资深拖延症患者(曾经),我由衷的感慨:拖延没什么卵用,它只能带来事情延误,而延误只能给你带来焦虑,焦虑只能...
    文藏新媒体阅读 531评论 0 1
  • 到中年,突然发现体力大不如从前,头发也开始白了,时不时还会感觉四肢发冷、腰酸耳鸣,十分得嗜睡,还开始便秘了……这种...
    享受幸福1阅读 662评论 0 1
  • 能量朗读:规画1遍,零极限300遍,论语第一二章2遍,心经1遍,忏悔三昧1遍 爱的表达:宝贝,你又进步啦!真棒!宝...
    馬雙麗阅读 203评论 0 0