有理数集,有理数的运算,这一章我们已经学完了,下面我们就来梳理一下这一章的重点知识点。
首先,什么是有理数呢?其实有理数详细来讲就是,负整数,正整数,负分数和正分数的统称,接下来我们就在这几种树上展开讨论。
不管是在学习有理数的运算乘方等等之前,都要先了解数轴,了解了数轴进行有理数的运算,才会变得更简便。数轴分为原点,也就是零,正方向也就是从原点向右的方向,也是一个箭头。在画数轴的时候,从原点起向右是正数,向左是负数,在画正负数时,要注意单位长度,每个单位之间相距的单位长度都是一样的。在数轴上进行加减法就简便了许多,比如(-2)-2,就是从负二再向左跳两个单位长度的距离,就是这个算式的结果:-4;还有(-2)+2,就是从负二向右跳两个单位长度的距离就是这个算式的结果:0;等等等等,加号就是往右跳,减号就是往左跳,这样就方便了许多。
有理数的乘除也是十分简单,只用遵守负负得正,正负得负的规律就行了,再让有理数的绝对值相乘或相除就可以了最后,加上负号或不加负号就得到了结果,如:2x(-2),可以看到,这个算式中有一个负号那么,这个算式的结果也一定是负数再让这两个有理数的绝对值相乘加上负号就是这个算式的结果:2x(-2)=-(2x2)=-4;4÷(-2),可以看到,这个算式中也有一个负号,那么这个算式的结果也一定是负数,再让这两个有理数的绝对值相除,最后加上负号,也就是这个算式的结果:4÷(-2)=-(4÷2)=-2。
我们再来讲一下什么是绝对值,其实也不用讲,记住一个概念就行:一个数的绝对值就是它到原点的距离首先,绝对值得符号是丨丨,比如:|-4|=4,|4|=4,|-1|=1等等。还有什么事相反数,其实一个正数的相反数就是在这个正数前面加一个负号,一个负数的相反数就是这个负数的绝对值。什么是倒数,其实一个数的倒数就是用一除以这个数,一除以这个数最后的结果就是这个数的倒数。
我们已经了解完了,有理数的四则运算和一些基本概念,接下来就要了解一下什么是有理数的乘方,以及乘方的简便形式。
在现实生活中,有很多这样的算式3x3x3x3,5x5x5x5,其实这种算式都可以用一种叫乘方的形式来表现,它的简便形式是这样得出来的,第一个算式的简便形式就是三的四次方,第二个就是五的四次方。每个数的几次方取决于这个数共乘了几次,成了五次,就是这个数的五次方,乘了三次,就是这个数的三次方,也是使运算表达更简便了。
我们现在只剩下一个概念了,那就是,一个大数如何用乘方来简便的表示,也被称为科学计数法。其实就是将一个大数,除了最高位数上的数以外的数通通写到小数点后面,也就成了几点几几几……再将小数点后的数位包括省略掉的零变成十的次方数,两数相乘就可以了。我们来实践一下405000,用科学记数法表示就是4.05x10的五次方;54709000,也就是5.4709x10的七次方。多加练习就能熟练掌握