高等代数 | 向量组、方程组与线性空间 | 由基础解系反解方程组 | 线性空间的和与交

向量组、方程组与线性空间

由基础解系反解方程组

(东华大学,2021)已知向量组
{ \alpha_{1}=(1,3,-2,2,0)^{\prime},\alpha_{2}=(1,-3,2,0,4)^{\prime},\alpha_{3}=(3,3,-2,4,4)^{\prime} . }
{M=L\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)}{\alpha_{1},\alpha_{2},\alpha_{3}} 生成的子空间.

  1. 求一个以 {M} 为解空间的齐次线性方程组 (I);
  2. 求一个导出组为 (I),有一个特解为 {\alpha_{0}=(1,-3,3,0,0)^{\prime}} 的非齐次线性方程组 (II)

solution

  1. 首先记 {A=\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)},对 {A^{\prime}} 进行初等行变换,化为阶梯形,有
    A^{\prime}=\left(\begin{array}{ccccc} 1 & 3 & -2 & 2 & 0 \\ 1 & -3 & 2 & 0 & 4 \\ 3 & 3 & -2 & 4 & 4 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 3 & -2 & 2 & 0 \\ 0 & -6 & 4 & -2 & 4 \\ 0 & -6 & 4 & -2 & 4 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 2 \\ 0 & 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)
    由此可知 {r(A)=2},而明显 {\alpha_{1},\alpha_{2}} 线性无关,所以 {\alpha_{1},\alpha_{2}}{M} 的一组基.另外,根据上述阶梯形可知方程组 {A^{\prime} X=0} 的基础解系为
    { \eta_{1}=(0,2,3,0,0)^{\prime},\eta_{2}=(-3,-1,0,3,0)^{\prime},\eta_{3}=(-6,2,0,0,3)^{\prime} }
    {B=\left(\eta_{1},\eta_{2},\eta_{3}\right)},则有 {A^{\prime} B=O},从而 {B^{\prime} A=O},这说明 {A} 的列向量 {\alpha_{1},\alpha_{2},\alpha_{3}} 均为方程组 {B^{\prime} X=0} 的解,而 明显 {r(B)=3},所以方程组 {B^{\prime} X=0} 的基础解系当中含有 {5-3=2} 个向量,而 {\alpha_{1},\alpha_{2}} 线性无关,所以它们构成 {B^{\prime} X=0} 的基础解系,也就是说方程组 {(I): B^{\prime} X=0},即
    { (I)\left\{\begin{array}{l} 2 x_{2}+3 x_{3}=0 \\ -3 x_{1}-x_{2}+3 x_{4}=0 \\ -6 x_{1}+2 x_{2}+3 x_{5}=0 \end{array}\right. }
    的解空间为 {M}.
  2. {x_{1}=1,x_{2}=-3,x_{3}=3,x_{4}=x_{5}=0} 时,有
    { 2 x_{2}+3 x_{3}=3 ; -3 x_{1}-x_{2}+3 x_{4}=0 ; -6 x_{1}+2 x_{2}+3 x_{5}=-12 . }
    于是方程组
    { (I I)\left\{\begin{array}{l} 2 x_{2}+3 x_{3}=3 \\ -3 x_{1}-x_{2}+3 x_{4}=0 \\ -6 x_{1}+2 x_{2}+3 x_{5}=-12 . \end{array}\right. }
    的导出组为 {(I)},同时以 {\alpha_{0}=(1,-3,3,0,0)^{\prime}} 为特解.

(合肥工业大学,2020)设 {W=L\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)},其中
{ \alpha_{1}=(1,2,-1,0,4)^{\prime},\alpha_{2}=(-1,3,2,4,1)^{\prime},\alpha_{3}=(2,9,-1,4,13)^{\prime} }

  1. 求以 {W} 作为其解空间的齐次线性方程组;
  2. 求以 {W_{1}=\{\eta+\alpha | \alpha \in W\}} 为解集的非齐次线性方程组,其中 {\eta=(1,2,1,2,1)^{\prime}}.

solution

  1. 首先记 {A=\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)},则
    { A^{\prime}=\left(\begin{array}{c} \alpha_{1}^{\prime} \\ \alpha_{2}^{\prime} \\ \alpha_{3}^{\prime} \end{array}\right)=\left(\begin{array}{ccccc} 1 & 2 & -1 & 0 & 4 \\ -1 & 3 & 2 &4 & 1 \\ 2 & 9 & -1 & 4 & 13 \end{array}\right) . }
    {A^{\prime}} 进行初等行变换化为阶梯形有
    { A^{\prime} \longrightarrow\left(\begin{array}{ccccc} 1 & 2 & -1 & 0 & 4 \\ 0 &5 & 1 & 4 & 5 \\ 0 &0 &0 & 0 & 0 \end{array}\right) }
    因此{r\left(A^{\prime}\right)=2},结合 {\alpha_{1},\alpha_{2}} 线性无关可知 {\alpha_{1},\alpha_{2}}{\alpha_{1},\alpha_{2},\alpha_{3}} 的一个极大线性无关组,从而 {W=L\left(\alpha_{1},\alpha_{2}\right)}.同时根据阶梯形,可得方程组 {A^{\prime} X=0} 的一组基础解系为
    { \eta_{1}=(7,-1,5,0,0)^{\prime},\eta_{2}=(8,-4,0,5,0)^{\prime},\eta_{3}=(-2,-1,0,0,1)^{\prime} . }
    此时显然有 {A^{\prime} \eta_{i}=0(i=1,2,3)},记 {B=\left(\eta_{1},\eta_{2},\eta_{3}\right)},即 {A^{\prime} B=O},于是取转置可知 {B^{\prime} A=O},这说明 {A} 的列向量(即 {\alpha_{1},\alpha_{2},\alpha_{3}} ) 都是方程组 {B^{\prime} X=0} 的解,而显然 {r\left(B^{\prime}\right)=3},从而 {B^{\prime} X=0} 的基础解系中含有 {5-r\left(B^{\prime}\right)=2} 个向量,且 {\alpha_{1},\alpha_{2}} 已经是 {B^{\prime} X=0} 的两个线性无关的解向量,从而 {\alpha_{1},\alpha_{2}} 就是 {B^{\prime} X=0} 的基 础解系,这说明 {W} 就是 {B^{\prime} X=0} 的解空间.故 {B^{\prime} X=0}
    { \left\{\begin{array}{l} 7 x_{1}-x_{2}+5 x_{3}=0 \\ 8 x_{1}-4 x_{2}+5 x_{4}=0 \\ -2 x_{1}-x_{2}+x_{5}=0 \end{array}\right. }
    是满足条件的一个方程组.
  2. {x_{1}=1,x_{2}=2,x_{3}=1,x_{4}=2,x_{5}=1} 时,有
    { 7 x_{1}-x_{2}+5 x_{3}=10,8 x_{1}-4 x_{2}+5 x_{4}=10,-2 x_{1}-x_{2}+x_{5}=-3 }
    从而 {\eta=(1,2,1,2,1)^{\prime}} 就是方程组
    { \left\{\begin{array}{l} 7 x_{1}-x_{2}+5 x_{3}=10 \\ 8 x_{1}-4 x_{2}+5 x_{4}=10 \\ -2 x_{1}-x_{2}+x_{5}=-3 . \end{array}\right. }
    的一个特解,而由第一问可知此方程组导出组的解空间为 {W},从而根据非齐次线性方程组解的性质可知 {W_{1}=\{\eta+\alpha | \alpha \in W\}} 就是上述方程组的解集.

求线性空间的和与交

(浙江工商大学,2020)已知向量组
{ \begin{array}{c} \alpha_{1}=(1,2,-1,-2),\alpha_{2}=(3,1,1,1),\alpha_{3}=(-1,0,1,-1) \\ \beta_{1}=(2,5,-6,-5),\beta_{2}=(-1,2,-7,3) \end{array} }
记子空间 {V_{1}=L\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)}{V_{2}=L\left(\beta_{1},\beta_{2}\right)}.求 {V_{1}+V_{2}}{V_{1} \cap V_{2}} 的维数和基.

solution
首先记矩阵 {A=\left(\alpha_{1}^{\prime},\alpha_{2}^{\prime},\alpha_{3}^{\prime},\beta_{1}^{\prime},\beta_{2}^{\prime}\right)},对 {A} 进行初等行变换,化为阶梯形,有
\begin{aligned} A &=\left(\begin{array}{ccccc} 1 & 3 & -1 & 2 & -1 \\ 2 & 1 & 0 & 5 & 2 \\ -1 & 1 & 1 & -6 & -7 \\ -2 & 1 & -1 & -5 & 3 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 3 & -1 & 2 & -1 \\ 0 & -5 & 2 & 1 & 4 \\ 0 & 4 & 0 & -4 & -8 \\ 0 & 7 & -3 & -1 & 1 \end{array}\right) \\ & \rightarrow\left(\begin{array}{ccccc} 1 & 3 & -1 & 2 & -1 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & 2 & -4 & -6 \\ 0 & 0 & -3 & 6 & 15 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 3 & -1 & 2 & -1 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 & 6 \end{array}\right) \end{aligned}
由此可知 {\alpha_{1},\alpha_{2},\alpha_{3},\beta_{2}} 为向量组 {\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2}} 的极大线性无关组,而明显 {V_{1}+V_{2}=L\left(\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2}\right)},所以 {\alpha_{1},\alpha_{2},\alpha_{3},\beta_{2}}{V_{1}+V_{2}} 的一组基,且 {\operatorname{dim}\left(V_{1}+V_{2}\right)=3}.
另外,对任意的 {\alpha \in V_{1} \cap V_{2}},不妨设
{ \alpha=k_{1} \alpha_{1}+k_{2} \alpha_{2}+k_{3} \alpha_{3}=l_{1} \beta_{1}+l_{2} \beta_{2} . }
则有
{ k_{1} \alpha_{1}^{\prime}+k_{2} \alpha_{2}^{\prime}+k_{3} \alpha_{3}^{\prime}-l_{1} \beta_{1}^{\prime}-l_{2} \beta_{2}^{\prime}=0 . }
将上式看作关于 {k_{1},k_{2},k_{3},-l_{1},-l_{2}} 的线性方程组,则其系数矩阵为 {A},而根据上述的阶梯形可知方程组 {A X=0} 的 通解为
{ \left(k_{1},k_{2},k_{3},-l_{1},-l_{2}\right)^{\prime}=k(-3,1,2,1,0)^{\prime} . }
其中 {k} 为任意常数,由此可知 {l_{1}=-k,l_{2}=0},所以 {\alpha=-k \beta_{1}}.这说明 {\beta_{1}} 即为 {V_{1} \cap V_{2}} 的基,且 {\operatorname{dim}\left(V_{1} \cap V_{2}\right)=1}.

(武汉理工大学,2021)设向量组
{ \begin{array}{c} A: \alpha_{1}=(1,0,2),\alpha_{2}=(1,1,3),\alpha_{3}=(1,-1,a+2) ; \\ B: \beta_{1}=(1,2,a+3),\beta_{2}=(2,1,a+6),\beta_{3}=(2,1,a+4) . \end{array} }

  1. {a} 满足什么条件时,向量组 {A,B} 等价;
  2. {a} 满足什么条件时,使得向量组 {A,B} 不等价;
  3. 记向量组 {A,B} 生成的子空间分别为 {W_{1},W_{2}},当 {A,B} 不等价时,求 {W_{1}+W_{2}} 的基与维数.

solution
首先记 {P=\left(\alpha_{1}^{\prime},\alpha_{2}^{\prime},\alpha_{3}^{\prime}\right),Q=\left(\beta_{1}^{\prime},\beta_{2}^{\prime},\beta_{3}^{\prime}\right)},对 {P,Q} 进行初等行变换,化为阶梯形,有
\begin{array}{c} P=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & a \end{array}\right) \rightarrow\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & a+1 \end{array}\right) \\ Q=\left(\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{array}\right) \rightarrow\left(\begin{array}{ccc} 1 & 2 & 2 \\ 0 & -3 & -3 \\ 0 & -a & -a-2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array}\right) . \end{array}
由此可知 {\beta_{1},\beta_{2},\beta_{3}} 线性无关.

  1. {a \neq-1} 时,显然 {P,Q} 可逆,从而向量组 {A,B} 等价.
  2. {a=-1} 时,由于 {r(P)=2,r(Q)=3},所以此时向量组 {A,B} 不等价.
  3. 由 (2) 可知 {a=-1},此时对 {(P,Q)} 进行初等行变换,化为阶梯形,有
    (P,Q)=\left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 2 & 3 & 1 & 2 & 5 & 3 \end{array}\right) \rightarrow\left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 0 & 1 & -1 \end{array}\right) \rightarrow\left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 0 & 0 & 0 & -2 & 0 & -2 \end{array}\right)
    由此可知 {\alpha_{1},\alpha_{2},\beta_{1}}{\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2},\beta_{3}} 的极大线性无关组,进而也是 {V_{1}+V_{2}=L\left(\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2},\beta_{3}\right)} 的 一组基,且 {\operatorname{dim}\left(V_{1}+V_{2}\right)=3}.

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容