17.同构

最后,考虑范畴中的可逆态射

态射f:A--B称之为同构,则存在态射g:B--A使得f\circ g=1_B,g\circ f=1_A

显然,态射g是唯一的,于是可以称之为f的逆,记为f^{-1}。唯一性证明还是熟悉的配方。

性质:

1.任意恒等态射是同构

2.同构的复合是同构

3.同构既是满态又是单态。于是具有左消性和右消性。f\circ g\circ f=f\circ h\circ f\Rightarrow g=h

范畴中如果一个部分是满态,那他就是同构。f\circ g\circ f=f\Rightarrow f\ is\ isomorphism

每个函子保持同构,显然。因为函子保持恒等态射和复合运算,故成立。

满的而且忠实的函子映出同构,显然。这样的函子实际上给出了一个一一对应,在函子的值域范畴中给出了定义域范畴的一个备份,同构性质自然保留。

a.集合范畴,同构是双射

b.拓扑空间范畴,同构是同胚映射。这说明既是满态又是单态,这样的态射未必是同构,因为双的连续映射未必是同胚。

c.群范畴,交换群范畴,带幺交换环范畴,同构是双同态

d.环的右模范畴,同构是双的线性映射

e.巴拿赫空间和有界线性泛函所构成的范畴,同构是有界线性双射。

同构自然是双射,反过来,一个有界线性双射的逆映射显然是线性的,由开映射定理,f是开的因为他是满射,但是f是开的意味着f逆是连续的,因此是有界的。

巴拿赫空间和线性收缩,同构是等距映射,原距离可视为收缩两次,肯定不大于收缩一次,但是收缩映射要求映射后不大于原距离,于是,距离在映射前后不变,为等距映射。

g.范畴的同构,要求满,忠实,而且在对象间诱导一个双射。

h.一个群可以视为单对象的自同构范畴,即每个态射是一个同构。其实,这就反映了群作用这一概念,群可视为对某个物体的操作。


这一节,啪,很快,一堆同构打出来,集合,群,拓扑空间,范畴,都防住了,这是有备而来,即便一本书在普通,同构自然是会讲的,所以就很熟悉,也就看得快了。

至于同构是不是范畴论的主题呢?应该不算是,更多的是一个引子,引出了这个领域。对于初涉猎的人而言是不错的切入点。

在不同的领域寻找同一范式,从而化陌生为熟悉,化未知为已知,极大的提升知识迁移速度,在更高的层次理解,这个应该是主题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • 当复合律出现在某些数学结构中时,我们总是关注那些可消去,或者说可逆的元素。这一部分将学习范畴中具有左消去性的态射。...
    Obj_Arr阅读 950评论 0 1
  • 接着学习函子,函子是范畴之间的结构保持映射。 给出两个函子,通过逐点复合的方式可以得到一个新的函子,可以验证,这种...
    Obj_Arr阅读 1,393评论 0 0
  • f.实巴拿赫空间和线性收缩,这个线性收缩到底是什么?单态就是单的线性收缩。 g.上面的例子带来了一个错误印象,在具...
    Obj_Arr阅读 636评论 0 1
  • 机器学习的「现代分析」基础 【定义 1】设 和 是距离空间, 若存在双射 , 使得则称 与 (通过 ) 等...
    水之心阅读 1,500评论 0 1
  • 交换群是满足一些额外结构的集合,群同态是满足一些额外性质的映射,因此,在某种程度上交换群范畴包含在集合范畴中,这种...
    Obj_Arr阅读 1,309评论 0 0