对于新教材中“假设”的策略我是这样理解的:“假设”是解决问题的一种思想方法,“换”是为了实现“假设”的一种手段。策略的教学更强调让学生感悟和体验,只有真正地充分地感悟和体验,才能实现对于策略的“悟”。本课,我带领学生提出问题、研究问题、解决问题、归纳总结,较充分地经历了体验与感悟的过程。
1.比较式渗透,自然过渡导入
课始我由易渐难,让学生抢答:(1)把720毫升果汁,倒入9个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?(2)把720毫升果汁,倒入3个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?紧接着出示:例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的13。小杯和大杯的容量各是多少毫升?继续抢答,当学生迟迟不举手、面露为难之色时,我忙上前关切地问:“怎么了?”生道:“有点儿难?”我顺势同时出示这3道题,说:“这题和前两题比,难在何处?”有了比较,学生立即反映出:“这题有两种杯子,两个未知量,而前两题只有一个杯子,一个未知量。”我顺势利导,装作恍然大悟:“噢,是呀,如果这一题也能像前两题一样只有……学生接过话茬说:“要是也只有一种杯子就简单了。”我开玩笑地说:“你们想得可真美!这个美好的愿望能实现吗?”抓住学生这一迫切地心理需要,我紧接着引导学生仔细分析题中的数量关系,展开了新授序幕。
正是因为有了比较,在接下来的学习中学生才切身感受到运用假设策略的好处,才乐于运用这种策略。
2.步步逼问,注重学生问题意识的培养
假设策略的本质是对于一个新问题通过对未知量进行假设,然后通过分析逐步逼近正确答案,最后把答案给“找”出来,从而使问题得以解决,它体现了一种逐步逼近的思想。也就是对于假设的策略来说,假设只是一个引子,其根本应该是根据两种未知量之间的关系实现假设,是通过“换”来“找”出答案。当学生分析完题中的条件时,我话锋一转:“还记得刚刚咱们许下的愿望吗?”“你想假设都是什么杯子?你的这个愿望能实现吗?怎么实现你的愿望?依据是什么?”“还有不同的想法吗?”在展示交流学生的解题过程时,我让学生互相提问,并对提问作出明确要求:“通过你的提问一步步逼出他说出具体的想法。” 通过猜想启发学生思路,引导学生提出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。最后让学生选择喜欢的方法列式解答。
有学生这样列方程:3X+X=720,立即有学生反对,我忙引导:“你来问他,通过你的提问让他知道自己的错误。”那学生立即问:“你是怎么设的?”答:“我设小杯的容量是X毫升,大杯是3X毫升。”问:“那你方程中3X表示什么?”答:“大杯的容量。”问:“X是什么?”答:“小杯的容量。”问:“X表示几个小杯的容量?”答:“1个小杯的容量。”问:“大杯的容量加1个小杯的容量等于720毫升吗?”生傻眼……
3.及时归纳提炼,形成策略。
虽然策略的学习关键在悟,要多让学生体验和感悟,但这并不因此就否定或削弱总结与概括的作用。事实上,必要的总结、归纳与提炼对于学生形成对策略的清晰的认识,建立策略模型起到非常重要的作用。本课,当学生经历了铺垫渗透,探索感悟两个环节后,对假设的策略已经有了一定的认识,这时就适时引导学生进行归纳提炼:回顾解题过程,你有什么想说的吗?在解决例1时我们遇到了什么困难,通过和前两题的比较有了什么想法,怎样解决困难的,需要注意什么?通过这样的归纳与提炼,学生对假设的策略就有了整体的认识,从而可以在解决问题中实际正确地运用假设的策略。
4.由形象到抽象,培养学生的数学意识
整节课,我由扶到放,出示例题时结合情境图让学生理解题意,并画一画体现“换”的过程,这样更形象,更简单易懂。画图假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。所以当学生对“假设”的思想初步感悟后,在练习时我先是引领学生分析关键句,说一说解题思路,再完成,最后是完全放手让学生独立解决问题再向指名汇报叙说自己的解题过程。
总之,数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法的获得更重要,我想这也应该是解决问题的策略的教学目的之一。