高等代数 | 向量组、方程组与线性空间 方程组 | 方程组理论问题 | 线性空间的交与和

向量组、方程组与线性空间

方程组理论问题

(山东大学,2022)已知两个向量组的秩相同,且其中一个可以被另一个线性表出,试证明这两个向量组等价.

proof
{\alpha_{1},\cdots,\alpha_{s}}{\beta_{1},\cdots,\beta_{t}}是秩均为{r}的向量组,且 {\alpha_{1},\cdots,\alpha_{s}}可被{\beta_{1},\cdots,\beta_{t}}线性表出.考虑{\beta_{1},\cdots,\beta_{t}}{\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}}这两个向量组,显然它们等价,所以{\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}}的秩也为{r},现设{\alpha_{k_{1}},\cdots,\alpha_{k_{r}}}{\alpha_{1},\cdots,\alpha_{s}} 的一个极大线性无关组,则 {\alpha_{k_{1}},\cdots,\alpha_{k_{r}}} 也是 {\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}} 中的 {r} 个线性无关的向量,又由{\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}}的秩为{r},所以 {\alpha_{k_{1}},\cdots,\alpha_{k_{r}}}{\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}}的极大线性无关组,从而 {\alpha_{k_{1}},\cdots,\alpha_{k_{r}}}{\alpha_{1},\cdots,\alpha_{s},\beta_{1},\cdots,\beta_{t}}等价,由传递性知{\alpha_{k_{1}},\cdots,\alpha_{k_{r}}}{\beta_{1},\cdots,\beta_{t}}等价,即 {\alpha_{1},\cdots,\alpha_{s}}{\beta_{1},\cdots,\beta_{t}} 等价.

(西南大学,2022)设 {A,B} 均为 {n} 列矩阵,证明: {n} 元齐次线性方程组 {A X=0}{B X=0} 同解当且仅当 {A,B} 的行向量组等价.

proof
必要性.为了方便,记 {C=\left(\begin{array}{c}A \\ B\end{array}\right)},由于 {A X=0}{B X=0} 同解,所以 {A X=0,B X=0} 均与 {C X=0} 同解,进而系数矩阵 {A,B,C} 的秩相同,而明显 {A,B} 的行向量组均可由 {C} 的行向量组线性表出,所以结合例题 22 可知 {A,B} 的行向量组均与 {C} 的行向量组等价,由传递性,{A,B} 的行向量组也等价.

充分性.已知 {A,B} 的行向量组等价,所以存在矩阵 {P,Q},使得 {P A=B,Q B=A},那么若 {X} 满足 {A X=0},则有 {B X=P A X=0},若 {X} 满足 {B X=0},则 {A X=Q B X=0},这说明方程组 {A X=0}{B X=0} 同解.

(电子科技大学,2022)若非齐次线性方程组 {A X=\beta(\beta \neq 0)} 有解,齐次线性方程组 {A X=0}{k(k < n)} 个线性无关解,证明: {A X =\beta}{k+1} 个线性无关解,不存在 {k+2} 个线性无关解.

proof
首先设 {\eta_{0}} 为方程组 {A X=\beta} 的一个特解,{\eta_{1},\eta_{2},\cdots,\eta_{k}}{A X=0}{k} 个线性无关解,则

\eta_{0},\eta_{0}+\eta_{1},\eta_{0}+\eta_{2},\cdots,\eta_{0}+\eta_{k} \quad (1)

{A X=\beta}{k+1} 个解,若 {l_{0} \eta_{0}+l_{1}\left(\eta_{0}+\eta_{1}\right)+l_{2}\left(\eta_{0}+\eta_{2}\right)+\cdots+l_{k}\left(\eta_{0}+\eta_{k}\right)=0},即
\left(l_{0}+l_{1}+\cdots+l_{k}\right) \eta_{0}+l_{1} \eta_{1}+l_{2} \eta_{2}+\cdots+l_{k} \eta_{k}=0 .\quad (2)
上述等式两边同时被 {A} 作用可得
{ 0=\left(l_{0}+l_{1}+\cdots+l_{k}\right) A \eta_{0}+l_{1} A \eta_{1}+l_{2} A \eta_{2}+\cdots+l_{k} A \eta_{k}=\left(l_{0}+l_{1}+\cdots+l_{k}\right) \beta . }
由于 {\beta \neq 0},所以
{ l_{0}+l_{1}+\cdots+l_{k}=0 . }
将其代入到(2)式,结合 {\eta_{1},\eta_{2},\cdots,\eta_{k}} 线性无关可得 {l_{1}=l_{2}=\cdots=l_{k}=0},进而也有 {l_{0}=0},这说明向量组(1)是方 程组 {A X=\beta}{k+1} 个线性无关的解向量.另外,若 {A X=\beta} 存在 {k+2} 个线性无关解 {\alpha_{1},\alpha_{2},\cdots,\alpha_{k+2}},那么
\alpha_{1}-\alpha_{k+2},\alpha_{2}-\alpha_{k+2},\cdots,\alpha_{k+1}-\alpha_{k+2} \quad (3)
均是导出组 {A X=0} 的解,同时若 {t_{1}\left(\alpha_{1}-\alpha_{k+2}\right)+t_{2}\left(\alpha_{2}-\alpha_{k+2}\right)+\cdots+t_{k+1}\left(\alpha_{k+1}-\alpha_{k+2}\right)=0},即
{ t_{1} \alpha_{1}+t_{2} \alpha_{2}+\cdots+t_{k+1} \alpha_{k+1}-\left(t_{1}+t_{2}+\cdots+t_{k+1}\right) \alpha_{k+2}=0 . }
根据 {\alpha_{1},\alpha_{2},\cdots,\alpha_{k+2}} 线性无关可得 {t_{1}=t_{2}=\cdots=t_{k+1}=0},即向量组(3)是 {A X=0}{k+1} 个线性无关解,这与 已知矛盾.即 {A X=\beta} 不存在 {k+2} 个线性无关解.

(重庆大学,2022)设 {A=\left(a_{i j}\right)_{n \times n}} 是实矩阵,证明: 线性方程组 {A X=B} 有解的充要条件是 向量 {B} 与齐次线性方程组 {A^{T} X=0} 的解空间正交.

proof
必要性.由于方程组 {A X=B} 有解,设解为 {X_{0}},即 {B=A X_{0}},那么对任意满足 {A^{T} X=0}{X},有 {B^{T} X=\left(A X_{0}\right)^{T} X=X_{0}^{T}\left(A^{T} X\right)=0},{B} 与齐次线性方程组 {A^{T} X=0} 的解空间正交.

充分性.由于向量 {B} 与齐次线性方程组 {A^{T} X=0} 的解空间正交,即若 {A^{T} X=0},则有 {B^{T} X=0},这说 明方程组 {A^{T} X=0}{\left(\begin{array}{c}A^{T} \\ B^{T}\end{array}\right) X=0} 同解,进而系数矩阵的秩相同,那么取转置就有 {r(A)=r(A,B)},所以 线性方程组 {A X=B} 有解.

(复旦大学,2022)设 {\mathbb{K}} 为一数域,{A_{1},A_{2} \in \mathbb{K}^{n \times n},b_{1},b_{2} \in \mathbb{K}^{n \times 1}},若线性方程组 {A_{1} X=b_{1}}{A_{2} X=b_{2}} 的解集相同,证明: 存在可逆的 {n} 阶方阵 {P},使得 {P A_{1}=A_{2}},且 {P b_{1}=b_{2}}.

proof
由于 {A_{1} X=b_{1}}{A_{2} X=b_{2}} 的解集相同,所以 {A_{1} X=b_{1},A_{2} X=b_{2},\left(\begin{array}{l}A_{1} \\ A_{2}\end{array}\right) X=\left(\begin{array}{l}b_{1} \\ b_{2}\end{array}\right)} 的 解集也相同,进而增广矩阵的秩相同,即
{ r\left(A_{1},b_{1}\right)=r\left(A_{2},b_{2}\right)=r\left(\begin{array}{cc} A_{1} & b_{1} \\ A_{2} & b_{2} \end{array}\right) . }
而明显 {\left(A_{1},b_{1}\right),\left(A_{2},b_{2}\right)} 的行向量均为 {\left(\begin{array}{ll}A_{1} & b_{1} \\ A_{2} & b_{2}\end{array}\right)} 的行向量,所以前两者的行向量组均与后者行向量组 等价,根据传递性便知 {\left(A_{1},b_{1}\right)}{\left(A_{2},b_{2}\right)} 的行向量组等价,现在设 {\alpha_{1},\alpha_{2},\cdots,\alpha_{r}}{\beta_{1},\beta_{2},\cdots,\beta_{r}} 分别为 {\left(A_{1},b_{1}\right)}{\left(A_{2},b_{2}\right)} 行向量组的极大线性无关,则它们等价,即存在 {r} 阶可逆矩阵 {Q_{1}},使得
{ Q_{1}\left(\begin{array}{c} \alpha_{1} \\ \vdots \\ \alpha_{r} \end{array}\right)=\left(\begin{array}{c} \beta_{1} \\ \vdots \\ \beta_{r} \end{array}\right) }
进而
{ \left(\begin{array}{cc} Q_{r} & O \\ O & E_{n-r} \end{array}\right)\left(\begin{array}{c} \alpha_{1} \\ \vdots \\ \alpha_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right)=\left(\begin{array}{c} \beta_{1} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right) . }
另外,根据矩阵的初等变换,还存在 {n} 阶可逆矩阵 {S}{T},使得
{ S\left(A_{1},b_{1}\right)=\left(\begin{array}{c} \alpha_{1} \\ \vdots \\ \alpha_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right),T\left(A_{2},b_{2}\right)=\left(\begin{array}{c} \beta_{1} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right) . }
所以
{ T\left(A_{2},b_{2}\right)=\left(\begin{array}{c} \beta_{1} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right)=\left(\begin{array}{cc} Q_{r} & O \\ O & E_{n-r} \end{array}\right)\left(\begin{array}{c} \alpha_{1} \\ \vdots \\ \alpha_{r} \\ 0 \\ \vdots \\ 0 \end{array}\right)=\left(\begin{array}{cc} Q_{r} & O \\ O & E_{n-r} \end{array}\right) S\left(A_{1},b_{1}\right) . }

线性空间的交与和

(北京科技大学,2022)设 {W_{1}=L\left(f_{1}(x),f_{2}(x),f_{3}(x)\right.} ),{W_{2}=L\left(f_{4}(x),f_{5}(x)\right.} ),其中
{ \begin{array}{c} f_{1}(x)=1-3 x-x^{2}+2 x^{3},f_{2}(x)=-1+x+2 x^{2}-x^{3},f_{3}(x)=-1+5 x-3 x^{2} ; \\ f_{4}(x)=-1-2 x+4 x^{2},f_{5}(x)=-14 x+9 x^{2}+5 x^{3} . \end{array} }

\item 求 {W_{1} \cap W_{2}} 的基与维数;
\item 将 {W_{1}} 的基扩为 {P[x]_{4}} 的基.

solution

\item 首先取 {P[x]_{4}} 的基 {1,x,x^{2},x^{3}},显然
{ \left(f_{1}(x),f_{2}(x),f_{3}(x),f_{4}(x),f_{5}(x)\right)=\left(1,x,x^{2},x^{3}\right) A . }
其中
A=\left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 0 \\ -3 & 1 & 5 & -2 & -14 \\ -1 & 2 & -3 & 4 & 9 \\ 2 & -1 & 0 & 0 & 5 \end{array}\right)
将矩阵 {A} 进行初等行变换化为阶梯形,有
A \rightarrow\left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 0 \\ 0 & -2 & 2 & -5 & -14 \\ 0 & 1 & -4 & 3 & 9 \\ 0 & 1 & 2 & 2 & 5 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 0 \\ 0 & 1 & 2 & 2 & 5 \\ 0 & 0 & 6 & -1 & -4 \\ 0 & 0 & -6 & 1 & 4 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 0 \\ 0 & 1 & 2 & 2 & 5 \\ 0 & 0 & 6 & -1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)
根据主元位置可知 {f_{1}(x),f_{2}(x),f_{3}(x)}{f_{1}(x),f_{2}(x),f_{3}(x),f_{4}(x),f_{5}(x)} 的极大线性无关组,即 {f_{4}(x),f_{5}(x)} 均可由 {f_{1}(x),f_{2}(x),f_{3}(x)} 线性表出,所以 {f_{4}(x),f_{5}(x) \in W_{1}},也就是 {W_{2} \subseteq W_{1}},于是 {W_{1} \cap W_{2}=W_{2}=L\left(f_{4}(x),f_{5}(x)\right)} 而明 显 {f_{4}(x),f_{5}(x)} 线性无关,所以 {f_{4}(x),f_{5}(x)} 就是 {W_{1} \cap W_{2}} 的一组基,{\operatorname{dim}\left(W_{1} \cap W_{2}\right)=2}.
\item 取 {g(x)=x^{3}},则
{ \left(f_{1}(x),f_{2}(x),f_{3}(x),g(x)\right)=\left(1,x,x^{2},x^{3}\right) B . }
其中
{ B=\left(\begin{array}{cccc} 1 & -1 & -1 & 0 \\ -3 & 1 & 5 & 0 \\ -1 & 2 & -3 & 0 \\ 2 & -1 & 0 & 1 \end{array}\right) }
将矩阵 {B} 进行初等行变换化为阶梯形,有
B \rightarrow\left(\begin{array}{cccc} 1 & -1 & -1 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 1 & 2 & 1 \end{array}\right) \rightarrow\left(\begin{array}{cccc} 1 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 3 & 1 \end{array}\right) \rightarrow\left(\begin{array}{cccc} 1 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)
由此可知矩阵 {B} 可逆,那么 {f_{1}(x),f_{2}(x),f_{3}(x),g(x)} 便构成 {P[x]_{4}} 的基.

(同济大学,2022)设向量
{ \alpha_{1}=(1,-1,1,0){\prime},\alpha_{2}=(1,1,0,2){\prime},\alpha_{3}=(-2,1,1,3){\prime},\alpha_{4}=(2,0,1,2){\prime},\alpha_{5}=(1,2,-2,1){\prime} . } {W_{1}=L\left(\alpha_{1},\alpha_{2}\right),W_{2}=L\left(\alpha_{3},\alpha_{4},\alpha_{5}\right)},求 {W_{1}+W_{2}}{W_{1} \cap W_{2}} 的维数和一组基.

solution
记矩阵 {A=\left(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5}\right)},将 {A} 进行初等行变换化为阶梯形,有
\begin{aligned} A &=\left(\begin{array}{ccccc} 1 & 1 & -2 & 2 & 1 \\ -1 & 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 & -2 \\ 0 & 2 & 3 & 2 & 1 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 1 & -2 & 2 & 1 \\ 0 & 2 & -1 & 2 & 3 \\ 0 & -1 & 3 & -1 & -3 \\ 0 & 2 & 3 & 2 & 1 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 1 & -2 & 2 & 1 \\ 0 & -1 & 3 & -1 & -3 \\ 0 & 0 & 5 & 0 & -3 \\ 0 & 0 & 9 & 0 & -5 \end{array}\right) \\ & \rightarrow\left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & -2 \\ 0 & -1 & 3 & -1 & -3 \\ 0 & 0 & 5 & 0 & -3 \\ 0 & 0 & 0 & 0 & \frac{2}{5} \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right) \rightarrow\left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right) \end{aligned}
由此可知 {\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}}{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5}} 的极大线性无关组,所以也是 {W_{1}+W_{2}=L\left(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5}\right)} 的 一组基,进而 {\operatorname{dim}\left(W_{1}+W_{2}\right)=4}.

另外,对任意的 {\alpha \in W_{1} \cap W_{2}},可设
{ \alpha=x_{1} \alpha_{1}+x_{2} \alpha_{2}=x_{3} \alpha_{3}+x_{4} \alpha_{4}+x_{5} \alpha_{5} }
那么 {x_{1} \alpha_{1}+x_{2} \alpha_{2}-x_{3} \alpha_{3}-x_{4} \alpha_{4}-x_{5} \alpha_{5}=0},将此看作关于 {x_{1},x_{2},-x_{3},-x_{4},-x_{5}} 的齐次线性方程组,根据上 述阶梯形可知方程组的通解为
{ x_{1}=x_{2}=x_{4},x_{3}=x_{5}=0 . }
其中 {x_{4}} 为自由末知量,所以 {\alpha=x_{4} \alpha_{4}},这说明 {W_{1} \cap W_{2}=L\left(\alpha_{4}\right)},进而 {\operatorname{dim}\left(W_{1} \cap W_{2}\right)=1}.

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容